Chinese Optics Letters, 2020, 18 (2): 021902, Published Online: Feb. 18, 2020  

Ultra-broadband enhanced nonlinear saturable absorption for Mo0.53W0.47Te2 nanosheets Download: 686次

Author Affiliations
1 College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract
Alloying in two-dimension has been a hot spot in the development of new, versatile systems of optics and electronics. Alloys have been demonstrated to be a fascinating strategy to modulate the chemical and electronic properties of two-dimensional nanosheets. We firstly reported ultra-broadband enhanced nonlinear saturable absorption of Mo0.53W0.47Te2 alloy at 0.6, 1.0, and 2.0 μm. The nonlinear saturable absorption of Mo0.53W0.47Te2 saturable absorber (SA) was measured by the open aperture Z-scan technique. Compared to MoTe2 and WTe2 SAs, the Mo0.53W0.47Te2 SA showed five times deeper modulation depth, 8.6% lower saturable intensity, and one order larger figure of merit. Thus, our research provides a method of alloys to find novel materials with more outstanding properties for optics and optoelectronic applications.

Zhengting Du, Hui Wu, Tianqi Zhang, Zhenda Xie, Yangyang Lü, Xinjie Lü, Jinlong Xu, Gang Zhao, Shining Zhu. Ultra-broadband enhanced nonlinear saturable absorption for Mo0.53W0.47Te2 nanosheets[J]. Chinese Optics Letters, 2020, 18(2): 021902.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!