光学学报, 2017, 37 (1): 0131001, 网络出版: 2017-01-13   

基于VO2相变的热致型智能辐射器设计

Design of Thermochromic Smart Radiation Device Based on VO2 Phase Change
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 上海市现代光学系统重点实验室, 上海 200093
3 上海电力学院电子与信息工程学院, 上海 200090
4 上海健康医学院医学影像学院, 上海 201318
摘要
基于VO2/Si3N4/Al结构设计了一种发射率可调控的智能辐射器 (SRD)。通过薄膜特征矩阵理论SRD的光学特性进行分析, 结果表明VO2的厚度决定了SRD的辐射能力, 其调控光谱范围与介质层Si3N4的厚度密切相关, 优化后的SRD发射率调控范围为0.38。采用MgF2/Si3N4双层减反膜进一步优化SRD, 使其低温(20 ℃)和高温(100 ℃)发射率分别达到0.30和0.91, 调控范围扩大至0.61。利用有限时域差分法分析了有无减反膜时SRD的辐射场分布, 结果表明减反膜可以提高SRD的温度调控效率, 增强空间复杂环境适应能力。设计思路对高性能SRD的制备和航天器热控系统的轻量化具有重要意义。
Abstract
A smart radiation device (SRD) of VO2/Si3N4/Al structure with tunable emittance is designed. The optical properties of SRD are studied through the optical thin film characteristic matrix analytical method. The results show that emission properties of SRD are determined by the thickness of VO2 and the modulation wavelength range is related to the thickness of Si3N4 dielectric layer. The emittance tunability of the optimized SRD is 0.38. The SRD with MgF2/Si3N4 bi-layer anti-reflection coating presents an emittance of 0.30 at 20 ℃ and 0.91 at 100 ℃, and the tunability is increased to 0.61. The finite difference time domain method is used to analyze the modulated radiation distribution of SRDs with or without anti-reflection coating. It is proved that the added anti-reflection coating can improve the emittance-switching efficiency of SRD and enhance its adaptability in complex environment. The method can give reference to the design of high performance SRD and meets the need for a lighter thermal control device of spacecraft.

蒋蔚, 李毅, 陈培祖, 伍征义, 徐婷婷, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于VO2相变的热致型智能辐射器设计[J]. 光学学报, 2017, 37(1): 0131001. Jiang Wei, Li Yi, Chen Peizu, Wu Zhengyi, Xu Tingting, Liu Zhimin, Zhang Jiao, Fang Baoying, Wang Xiaohua, Xiao Han. Design of Thermochromic Smart Radiation Device Based on VO2 Phase Change[J]. Acta Optica Sinica, 2017, 37(1): 0131001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!