Opto-Electronic Advances, 2020, 3 (2): 02190037, Published Online: Mar. 25, 2020  

Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework

Author Affiliations
1 Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, Heraklion, Crete 70013, Greece
2 Department of Physics, University of Crete, Voutes University Campus, Crete 71003, Greece
Copy Citation Text

Athanasia Papanikolaou, George J. Tserevelakis, Kristalia Melessanaki, Costas Fotakis, Giannis Zacharakis, Paraskevi Pouli. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework[J]. Opto-Electronic Advances, 2020, 3(2): 02190037.

References

[1]

Cooper M. Laser Cleaning in Conservation: An Introduction (Butterworth Heinemann, Oxford, 1998).

[2]

Fotakis C, Anglos D, Zafiropulos V, Georgiou S, Tornari V. Lasers in the Preservation of Cultural Heritage: Principles and Applications (CRC Press, Boca Raton, 2006).

[3] S Siano, J Agresti, I Cacciari, D Ciofini, M Mascalchi, et al.. Laser cleaning in conservation of stone, metal, and painted artifacts: State of the art and new insights on the use of the Nd:YAG lasers. Appl Phys A, 2012, 106: 419-446.

[4] P Pouli, M Oujja, M Castillejo. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Appl Phys A, 2012, 106: 447-464.

[5] P Pouli, E Papakonstantinou, K Frantzikinaki, A Panou, G Frantzi, et al.. The two-wavelength laser cleaning methodology; theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis sculptures. Herit Sci, 2016, 4: 9.

[6] P V Maravelaki, V Zafiropulos, V Kilikoglou, M Kalaitzaki, C Fotakis. Laser-induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim Acta Part B: At Spectrosc, 1997, 52: 41-53.

[7] I Gobernado-Mitre, A C Prieto, V Zafiropulos, Y Spetsidou, C Fotakis. On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence. Appl Spectrosc, 1997, 51: 1125-1129.

[8] R Salimbeni, R Pini, S Siano. Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line optical diagnostics. Spectrochim Acta Part B: At Spectrosc, 2001, 56: 877-885.

[9] K Melessanaki, C Stringari, C Fotakis, D Anglos. Laser cleaning and spectroscopy: a synergistic approach in the conservation of a modern painting. Laser Chem, 2006, 2006: 42709.

[10] F J Fortes, L M Cabalín, J J Laserna. The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochim Acta Part B: At Spectrosc, 2008, 63: 1191-1197.

[11] D Ciofini, M Oujja, M V Cañamares, S Siano, M Castillejo. Spectroscopic assessment of the UV laser removal of varnishes from painted surfaces. Microchem J, 2016, 124: 792-803.

[12] P Moretti, M Iwanicka, K Melessanaki, E Dimitroulaki, O Kokkinaki, et al.. Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Herit Sci, 2019, 7: 44.

[13] C Fischer, I Kakoulli. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev Conserv, 2006, 7: 3-16.

[14] V Papadakis, A Loukaiti, P Pouli. A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J Cult Herit, 2010, 11: 325-328.

[15] J S Pozo-Antonio, M P Fiorucci, A Ramil, T Rivas, A J López. Hyperspectral imaging as a non destructive technique to control the laser cleaning of graffiti on granite. J Nondestr Eval, 2016, 35: 44.

[16] A J Klemm, P Sanjeevan. Application of laser speckle analysis for the assessment of cementitious surfaces subjected to laser cleaning. Appl Surf Sci, 2008, 254: 2642-2649.

[17] E Bernikola, K Melessanaki, K Hatzigiannakis, P Pouli, V Tornari. Real-time monitoring of laser assisted removal of shellac from wooden artefacts using Digital Holographic Speckle Pattern Interferometry. In Lasers in the Conservation of Artworks 52-59 (Archetype Publications Ltd, London, 2013.

[18] Z Márton, I Kisapáti, Á Török, V Tornari, E Bernikola, et al.. Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples. NDT E Int, 2014, 63: 53-59.

[19]

Lasers in the conservation of artworks XI. Proceedings of the International Conference LACONA XI 2016 105-114 (NCU Press, 2017); http://doi.org/10.12775/3875-4.07. ]]>

[20] J Striova, R Fontana, M Barucci, A Felici, E Marconi, et al.. Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchem J, 2016, 124: 331-337.

[21] G J Tserevelakis, P Siozos, A Papanikolaou, K Melessanaki, G Zacharakis. Non-invasive photoacoustic detection of hidden underdrawings in paintings using air-coupled transducers. Ultrasonics, 2019, 98: 94-98.

[22] M I Cooper, D C Emmony, J Larson. Characterization of laser cleaning of limestone. Opt Laser Technol, 1995, 27: 69-73.

[23] J M Lee, K G Watkins. In-process monitoring techniques for laser cleaning. Opt Lasers Eng, 2000, 34: 429-442.

[24] V B Bregar, J Možina. Optoacoustic analysis of the laser-cleaning process. Appl Surf Sci, 2002, 185: 277-288.

[25] M Jankowska, G Śliwiński. Acoustic monitoring for the laser cleaning of sandstone. J Cult Herit, 2003, 4: 65-71.

[26] C Gómez, A Costela, I García-Moreno, R Sastre. Comparative study between IR and UV laser radiation applied to the removal of graffitis on urban buildings. Appl Surf Sci, 2006, 252: 2782-2793.

[27] A E Villarreal-Villela, L P Cabrera. Monitoring the laser ablation process of paint layers by PILA technique. Open J Appl Sci, 2016, 6: 626-635.

[28] G J Tserevelakis, J S Pozo-Antonio, P Siozos, T Rivas, P Pouli, et al.. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cult Herit, 2019, 35: 108-115.

[29] P Maravelaki-Kalaitzaki. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and origin. Anal Chim Acta, 2005, 532: 187-198.

[30] S S Potgieter-Vermaak, R H M Godoi, R van Grieken, J H Potgieter, M Oujja, et al.. Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2005, 61: 2460-2467.

[31] V Vergès-Belmin, C Dignard. Laser yellowing: myth or reality. J Cult Herit, 2003, 4: 238-244.

[32] S Klein, F Fekrsanati, J Hildenhagen, K Dickmann, H Uphoff, et al.. Discoloration of marble during laser cleaning by Nd:YAG laser wavelengths. Appl Surf Sci, 2001, 171: 242-251.

[33] M Gaviño, M Castillejo, V Vergès-Belmin, W Nowik, M Oujja, et al.. Black crusts removal: the effect of stone yellowing and clearing strategies. Air Pollution and Cultural Heritage Leiden: AA Balkema, 2004: 239-245.

[34]

Zafiropulos V, Pouli P, Kylikoglou V, Maravelaki-Kalaitzaki P, Luk'yanchuk B S et al. Synchronous use of IR and UV laser pulses in the removal of encrustation: mechanistic aspects, discoloration phenomena and benefits. In Lasers in the Conservation of Artworks, 311-318 (Springer, Berlin, Heidelberg, 2005).

[35]

Pouli P, Fotakis C, Hermosin B, Saiz-Jimenez C, Domingo C et al. The laser-induced discoloration of stonework; a comparative study on its origins and remedies. Spectrochim Acta Part A: Mol Biomol Spectrosc 71, 932-945 (2008).

[36]

Godet M, Vergès-Belmin V, Gauquelin N, Saheb M, Monnier J et al. Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing. Micron 115, 25-31 (2018).

[37]

Lasers in the Conservation of Artworks XI, Proceedings of the International Conference LACONA XI 95-104 (NCU Press, 2017); http://doi.org/10.12775/3875-4.06. ]]>

[38]

Wang L V, Wu H I. Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, USA, 2007).

[39]

Simandoux O, Prost A, Gateau J, Bossy E. Influence of nanoscale temperature rises on photoacoustic generation: discrimination between optical absorbers based on thermal nonlinearity at high frequency. Photoacoustics 3, 20-25 (2015).

[40] D Marla, U V Bhandarkar, S S Joshi. A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl Phys A, 2014, 116: 273-285.

[41] X H Feng, F Gao, C Y Xu, G M Li, Y J Zheng. Self temperature regulation of photothermal therapy by laser-shared photoacoustic feedback. Opt Lett, 2015, 40: 4492-4495.

[42] X H Feng, F Gao, Y J Zheng. Photoacoustic-based-close-loop temperature control for nanoparticle hyperthermia. IEEE Trans Biomed Eng, 2015, 62: 1728-1737.

Athanasia Papanikolaou, George J. Tserevelakis, Kristalia Melessanaki, Costas Fotakis, Giannis Zacharakis, Paraskevi Pouli. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework[J]. Opto-Electronic Advances, 2020, 3(2): 02190037.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!