激光与光电子学进展, 2020, 57 (9): 090002, 网络出版: 2020-05-06   

涡旋激光阵列产生技术研究进展 下载: 1873次

Research Progress of Vortex Beam Array Generation Technology
作者单位
上海师范大学数理学院, 上海 200234
引用该论文

李伟, 俞嘉文, 闫爱民. 涡旋激光阵列产生技术研究进展[J]. 激光与光电子学进展, 2020, 57(9): 090002.

Wei Li, Jiawen Yu, Aimin Yan. Research Progress of Vortex Beam Array Generation Technology[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090002.

参考文献

[1] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[2] Friese M E J, Nieminen T A, Heckenberg N R, et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 1998, 394(6691): 348-350.

[3] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348.

[4] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode Division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

[5] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[6] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.

[7] Robbert J, Mandeep S, Joseph J. The use of orbital angular momentum of light beams for optical data storage[J]. Proceedings of SPIE, 2004, 5380: 387-392.

[8] He H. Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826-829.

[9] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

[10] Coullet P, Gil L, Rocca F. Optical vortices[J]. Optics Communications, 1989, 73(5): 403-408.

[11] Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams[J]. Optics Communications, 1991, 83(1/2): 123-135.

[12] Heckenberg N R. McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

[13] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

[14] Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 2003, 28(11): 872-874.

[15] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

[16] 柯熙政, 葛甜. 利用少模光纤产生涡旋光的实验[J]. 中国激光, 2017, 44(11): 1106004.

    Ke X Z, Ge T. Experiment on generation of vortex light with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(11): 1106004.

[17] Shvedov V G, Izdebskaya Y V, Alekseev A N, et al. The formation of optical vortices in the course of light diffraction on a dielectric wedge[J]. Technical Physics Letters, 2002, 28(3): 256-259.

[18] 邹文康, 杨春勇, 侯金, 等. 环形渐变型光栅用于涡旋光束拓扑荷数测量的研究[J]. 激光与光电子学进展, 2019, 56(14): 140501.

    Zou W K, Yang C Y, Hou J, et al. Measurement of topological charges for vortex beams using gradually-changing-period annular gratings[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140501.

[19] 李润泉, 王智, 崔粲, 等. 正六边形多孔阵列的涡旋光衍射[J]. 光学学报, 2018, 38(10): 1005002.

    Li R Q, Wang Z, Cui C, et al. Diffraction of vortex beam by regular hexagonal multi-hole array[J]. Acta Optica Sinica, 2018, 38(10): 1005002.

[20] 裴春莹, 茅志翔, 徐素鹏, 等. 涡旋光束轨道角动量的一种新型干涉检测方法[J]. 激光与光电子学进展, 2019, 56(14): 140502.

    Pei C Y, Mao Z X, Xu S P, et al. Interferometric detection method for orbital angular momentum of vortex beams[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140502.

[21] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1/2/3/4/5/6): 169-175.

[22] Chapin S C, Germain V, Dufresne E R. Automated trapping, assembly, and sorting with holographic optical tweezers[J]. Optics Express, 2006, 14(26): 13095-13100.

[23] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 2004, 12(6): 1144-1149.

[24] Ebihara T J. Optical vortex masks for via levels[J]. Nanolithography, MEMS, and MOEMS, 2004, 3(2): 293-305.

[25] 薛婧璇, 魏炜, 赵冉, 等. 光涡旋阵列位移测量模拟[J]. 山东师范大学学报(自然科学版), 2017, 32(1): 101-106.

    Xue J X, Wei W, Zhao R, et al. Displacement measurement simulation of optical vortx lattice[J]. Journal of Shandong Normal University(Natural Science), 2017, 32(1): 101-106.

[26] Vyas S, Senthilkumaran P. Interferometric optical vortex array generator[J]. Applied Optics, 2007, 46(15): 2893-2898.

[27] Vyas S, Senthilkumaran P. Vortex array generation by interference of spherical waves[J]. Applied Optics, 2007, 46(32): 7862-7867.

[28] Masajada J, Popiolek-Masajada A, Leniec M. Creation of vortex lattices by a wavefront division[J]. Optics Express, 2007, 15(8): 5196-5207.

[29] O’Holleran K, Padgett M J, Dennis M R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves[J]. Optics Express, 2006, 14(7): 3039-3044.

[30] Li Z H, Cheng C F. Generation of second-order vortex arrays with six-pinhole interferometers under plane wave illumination[J]. Applied Optics, 2014, 53(8): 1629-1635.

[31] Schoonover R W, Visser T D. Creating polarization singularities with an N-pinhole interferometer[J]. Physical Review A, 2009, 79(4): 043809.

[32] Talbot H F. LXXVI. Facts relating to optical science. No. IV[J]. The London, Edinburgh, Dublin PhilosophicalMagazine and Journal ofScience, 1836, 9( 56): 401- 407.

[33] Zhang XY, Hu CH, ZhaoR, et al. Generation of optical vortex array by using a diffraction grating[C]∥2017 9th International Conference on Advanced Infocomm Technology (ICAIT), November 22-24, 2017, Chengdu. IEEE, 2017: 25- 29.

[34] Wei G X, Lu L L, Guo C S. Generation of optical vortex array based on the fractional Talbot effect[J]. Optics Communications, 2009, 282(14): 2665-2669.

[35] 张新宇, 魏炜, 孙平. 基于双光栅衍射的规则涡旋光阵列产生方法[J]. 山东师范大学学报(自然科学版), 2018, 33(1): 61-68.

    Zhang X Y, Wei W, Sun P. Generation of regular optical vortex array by using double diffraction gratings[J]. Journal of Shandong Normal University(Natural Science), 2018, 33(1): 61-68.

[36] 柴忠洋, 王祺昌, 曾臻, 等. 基于光楔阵列产生光学涡旋阵列的研究[J]. 光子学报, 2015, 44(4): 0426005.

    Chai Z Y, Wang Q C, Zeng Z, et al. Research on the generation of optical vortex array using a wedge array[J]. Acta Photonica Sinica, 2015, 44(4): 0426005.

[37] Lin Y C, Lu T H, Huang K F, et al. Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode[J]. Optics Express, 2011, 19(11): 10293-10303.

[38] Yu J J, Zhou C H, Jia W, et al. Three-dimensional Dammann vortex array with tunable topological charge[J]. Applied Optics, 2012, 51(13): 2485-2490.

[39] Li SH, Xu ZD, LiuJ, et al. Experimental demonstration of free-space optical communications using orbital angular momentum (OAM) array encoding/decoding[C]∥CLEO: 2015, May 10-15, 2015, San Jose, California. Washington, D. C.: OSA, 2015: 1- 2.

[40] 黄素娟, 张杰, 邵蔚, 等. 高质量光学涡旋阵列的实验研究[J]. 光子学报, 2017, 46(8): 0826002.

    Huang S J, Zhang J, Shao W, et al. Experimental study on optical vortex array with high quality[J]. Acta Photonica Sinica, 2017, 46(8): 0826002.

[41] 贺超, 黄素娟, 谷婷婷, 等. 基于计算全息的光环晶格阵列研究[J]. 中国激光, 2014, 41(3): 0309003.

    He C, Huang S J, Gu T T, et al. Study of optical ring lattice array based on computer-generated holography[J]. Chinese Journal of Lasers, 2014, 41(3): 0309003.

[42] Daria V R, Rodrigo P J, Glückstad J. Dynamic array of dark optical traps[J]. Applied Physics Letters, 2004, 84(3): 323-325.

[43] Kumar A, Vaity P, Banerji J, et al. Making an optical vortex and its copies using a single spatial light modulator[J]. Physics Letters A, 2011, 375(41): 3634-3640.

[44] Gao Y M, Wen Z R, Shan J, et al. Generation of the compound optical vortex array wave field[J]. Optik, 2017, 131: 41-48.

[45] Li H, Liu H G, Chen X F. Nonlinear vortex beam array generation by spatially modulated fundamental wave[J]. Optics Express, 2017, 25(23): 28668-28673.

[46] Brasselet E. Tunable optical vortex arrays from a single nematic topological defect[J]. Physical Review Letters, 2012, 108(8): 087801.

[47] Son B, Kim S, Kim Y H, et al. Optical vortex arrays from smectic liquid crystals[J]. Optics Express, 2014, 22(4): 4699-4704.

[48] Kapoor A, Kumar M, Senthilkumaran P, et al. Optical vortex array in spatially varying lattice[J]. Optics Communications, 2016, 365: 99-102.

[49] Barboza R, Bortolozzo U, Assanto G, et al. Harnessing optical vortex lattices in nematic liquid crystals[J]. Physical Review Letters, 2013, 111(9): 093902.

[50] Guo C S, Zhang Y, Han Y J, et al. Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering[J]. Optics Communications, 2006, 259(2): 449-454.

[51] Jin J J, Pu M B, Wang Y Q, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201.

[52] Mehmood M Q, Mei S T, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533-2539.

[53] Yue F Y, Wen D D, Zhang C M, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Advanced Materials, 2017, 29(15): 1603838.

[54] Huang L L, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces[J]. ACS Photonics, 2017, 4(2): 338-346.

[55] Gao H, Li Y, Chen L W, et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design[J]. Nanoscale, 2018, 10(2): 666-671.

李伟, 俞嘉文, 闫爱民. 涡旋激光阵列产生技术研究进展[J]. 激光与光电子学进展, 2020, 57(9): 090002. Wei Li, Jiawen Yu, Aimin Yan. Research Progress of Vortex Beam Array Generation Technology[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!