光学学报, 2018, 38 (10): 1014001, 网络出版: 2019-05-09   

外延叠层多有源区激光器的结构优化设计 下载: 937次

Optimization Design of Epitaxially-Stacked Multiple-Active-Region Lasers
作者单位
1 中国科学院大学, 北京 100049
2 中国科学院半导体研究所光电子器件国家工程研究中心, 北京 100083
引用该论文

侯继达, 熊聪, 祁琼, 刘素平, 马骁宇. 外延叠层多有源区激光器的结构优化设计[J]. 光学学报, 2018, 38(10): 1014001.

Jida Hou, Cong Xiong, Qiong Qi, Suping Liu, Xiaoyu Ma. Optimization Design of Epitaxially-Stacked Multiple-Active-Region Lasers[J]. Acta Optica Sinica, 2018, 38(10): 1014001.

参考文献

[1] Schwarz B. Mapping the world in 3D[J]. Nature Photonics, 2010, 4(7): 429-430.

[2] Glennie C, Lichti D D. Temporal stability of the velodyne HDL-64E S2 scanner for high accuracy scanning applications[J]. Remote Sensing, 2011, 3(3): 539-553.

[3] Zeng L, Liu G D, Yang D W, et al. Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation[J]. Applied Physics Letters, 2013, 102(5): 053704.

[4] Zeng L, Liu G D, Yang D W, et al. 3D-visual laser-diode-based photoacoustic imaging[J]. Optics Express, 2012, 20(2): 1237-1246.

[5] Hall D S. High definition lidar system: US8767190 B2[P/OL].2011-05-17[2014-07-01]. http:∥www. google. com/patents/US8767190.

[6] Glennie C, Lichti D D. Static calibration and analysis of the velodyne HDL-64E S2 for high accuracy mobile scanning[J]. Remote Sensing, 2010, 2(6): 1610-1624.

[7] Glennie C, Brooks B, Ericksen T, et al. Compact multipurpose mobile laser scanning system-initial tests and results[J]. Remote Sensing, 2013, 5(2): 521-538.

[8] Wojtanowski J, Zygmunt M, Kaszczuk M, et al. Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions[J]. Opto-Electronics Review, 2014, 22(3): 183-190.

[9] Tsang W T. Integrated multilayer GaAs lasers separated by tunnel junctions[J]. Applied Physics Letters, 1982, 41(6): 499-501.

[10] Garcia J C, Rosencher E, Collot P, et al. Epitaxially stacked lasers with Esaki junctions: A bipolar cascade laser[J]. Applied Physics Letters, 1997, 71(26): 3752-3754.

[11] Cui B F, Guo W L, Du X D, et al. A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam[J]. Chinese Physics B, 2012, 21(9): 094209.

[12] 李辉, 曲轶, 张剑家, 等. 高功率905 nm InGaAs隧道结串联叠层半导体激光器[J]. 强激光与粒子束, 2013, 25(10): 2517-2520.

    Li H, Qu Y, Zhang J J, et al. High power 905 nm InGaAs tunnel junction series stacked semiconductor lasers[J]. High Power Laser and Particle Beams, 2013, 25(10): 2517-2520.

[13] Marmalyuk A A, Davydova E I, Zverkov M V, et al. Laser diodes with several emitting regions (λ= 800-1100 nm) on the basis of epitaxially integrated heterostructures[J]. Semiconductors, 2011, 45(4): 519-525.

[14] Davydova E I, Zverkov M V, Konyaev V P, et al. High-power laser diodes based on triple integrated InGaAs/AlGaAs/GaAs structures emitting at 0.9 μm[J]. Quantum Electronics, 2009, 39(8): 723-726.

[15] Zverkov M V, Konyaev V P, Krichevskii V V, et al. Double integrated nanostructures for pulsed 0.9 μm laser diodes[J]. Quantum Electronics, 2008, 38(11): 989-992.

[16] Gokhale M R, Dries J C, Studenkov P V, et al. High-power high-efficiency 0.98 μm wavelength InGaAs-(In)GaAs(P)-InGaP broadened waveguide lasers grown by gas-source molecular beam epitaxy[J]. IEEE Journal of Quantum Electronics, 1997, 33(12): 2266-2276.

[17] Ryvkin B S, Avrutin E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. Journal of Applied Physics, 2005, 97(12): 123103.

[18] Tan S Y, Zhai T, Zhang R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers[J]. Chinese Physics B, 2015, 24(6): 064211.

[19] Botez D. Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers[J]. Applied Physics Letters, 1999, 74(21): 3102-3104.

[20] Wang X Z, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 658-665.

[21] Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 2010, 12(8): 085007.

[22] 张冬云, 谢印开, 李丛洋, 等. 高功率半导体激光器微通道热沉的模拟优化[J]. 中国激光, 2017, 44(2): 0202008.

    Zhang D Y, Xie Y K, Li C Y, et al. Simulation and optimization of high power semicondutor laser microchannel heat sink[J]. Chinese Journal of Lasers, 2017, 44(2): 0202008.

[23] 孔真真, 崔碧峰, 黄欣竹, 等. 大功率半导体激光器性能改善的研究[J]. 激光与光电子学进展, 2017, 54(7): 071403.

    Kong Z Z, Cui B F, Huang X Z, et al. Study on performance improvement of high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071403.

侯继达, 熊聪, 祁琼, 刘素平, 马骁宇. 外延叠层多有源区激光器的结构优化设计[J]. 光学学报, 2018, 38(10): 1014001. Jida Hou, Cong Xiong, Qiong Qi, Suping Liu, Xiaoyu Ma. Optimization Design of Epitaxially-Stacked Multiple-Active-Region Lasers[J]. Acta Optica Sinica, 2018, 38(10): 1014001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!