Photonics Research, 2020, 8 (11): 11001734, Published Online: Oct. 28, 2020  

Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions Download: 639次

Author Affiliations
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 State Key Laboratory of Optoelectronic Materials & Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
3 Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076, Finland
4 QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
5 e-mail: jlzhao@nwpu.edu.cn
Copy Citation Text

Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 11001734.

References

[1] A. Fu, H. Gao, P. Petrov, P. Yang. Widely tunable distributed Bragg reflectors integrated into nanowire waveguides. Nano Lett., 2015, 15: 6909-6913.

[2] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 2009, 3: 569-576.

[3] X. Guo, Y. Ying, L. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 2014, 47: 656-666.

[4] S. W. Eaton, A. Fu, A. B. Wong, C. Z. Ning, P. Yang. Semiconductor nanowire lasers. Nat. Rev. Mater., 2016, 1: 16028.

[5] J. Sun, M. Han, Y. Gu, Z. X. Yang, H. Zeng. Recent advances in group III–V nanowire infrared detectors. Adv. Opt. Mater., 2018, 6: 1800256.

[6] W. Luo, Q. Weng, M. Long, P. Wang, F. Gong, H. Fang, M. Luo, W. Wang, Z. Wang, D. Zheng, W. Hu, X. Chen, W. Lu. Room-temperature single-photon detector based on single nanowire. Nano Lett., 2018, 18: 5439-5445.

[7] L. Hu, Q. Liao, Z. Xu, J. Yuan, Y. Ke, Y. Zhang, W. Zhang, G. P. Wang, S. Ruan, Y. J. Zeng, S. T. Han. Defect reconstruction triggered full-color photodetection in single nanowire phototransistor. ACS Photon., 2019, 6: 886-894.

[8] E. Garnett, P. Yang. Light trapping in silicon nanowire solar cells. Nano Lett., 2010, 10: 1082-1087.

[9] C.-Z. Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review. Adv. Photon., 2019, 1: 014002.

[10] X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, T. C. Sum. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. Nano Lett., 2013, 13: 5336-5343.

[11] Y. S. No, J. H. Choi, H. S. Ee, M. S. Hwang, K. Y. Jeong, E. K. Lee, M. K. Seo, S. H. Kwon, H. G. Park. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED. Nano Letters, 2013, 13: 772-776.

[12] C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, R. Agarwal. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater., 2011, 10: 669-675.

[13] J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, Y. Arakawa. Low-threshold near-infrared GaAs-AlGaAs core-shell nanowire plasmon laser. ACS Photon., 2015, 2: 165-171.

[14] J. Zhou, F. Gu, X. Liu, J. Qiu. Enhanced multiphoton upconversion in single nanowires by waveguiding excitation. Adv. Opt. Mater., 2016, 4: 1174-1178.

[15] C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, L. Tong. Single CdTe nanowire optical correlator for femtojoule pulses. Nano Lett., 2016, 16: 4807-4810.

[16] B. Chen, H. Wu, C. Xin, D. Dai, L. Tong. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun., 2017, 8: 20.

[17] J. Xie, X. Hu, C. Li, F. Wang, P. Xu, L. Tong, H. Yang, Q. Gong. On-chip dual electro-optic and optoelectric modulation based on ZnO nanowire-coated photonic crystal nanocavity. Adv. Opt. Mater., 2018, 6: 1800374.

[18] C. E. Wilhelm, M. I. B. Utama, G. Lehoucq, Q. Xiong, C. Soci, D. Dolfi, A. De Rossi, S. Combrie. Broadband tunable hybrid photonic crystal-nanowire light emitter. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 2736602.

[19] H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, C. M. Lieber. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics, 2008, 2: 622-626.

[20] M. D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, M. Notomi. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat. Mater., 2014, 13: 279-285.

[21] M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, M. Notomi. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal. APL Photon., 2017, 2: 046106.

[22] Q. Yuan, L. Fang, H. Yang, X. Gan, V. Khayrudinov, H. Lipsanen, Z. Sun, J. Zhao. Low-power continuous-wave second harmonic generation in semiconductor nanowires. Laser Photon. Rev., 2018, 12: 1800126.

[23] Q. Yuan, L. Fang, Y. Wang, B. Mao, J. Zhao, X. Gan, Q. Zhao, V. Khayrudinov, H. Lipsanen, Z. Sun. Mode couplings of a semiconductor nanowire scanning across a photonic crystal nanocavity. Chin. Opt. Lett., 2019, 17: 062301.

[24] A. Yokoo, M. Takiguchi, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, H. Taniyama, M. Notomi. Subwavelength nanowire lasers on a silicon photonic crystal operating at telecom wavelengths. ACS Photon., 2017, 4: 355-362.

[25] C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat. Commun., 2014, 5: 3246.

[26] Q. Gao, V. G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H. H. Tan, C. Jagadish. Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett., 2016, 16: 4361-4367.

[27] Q. Gao, D. Saxena, F. Wang, L. Fu, S. Mokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H. H. Tan, C. Jagadish. Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. Nano Lett., 2014, 14: 5206-5211.

[28] B. S. Song, S. Noda, T. Asano, Y. Akahane. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater., 2005, 4: 207-210.

[29] A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, M. F. Limonov. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photon., 2019, 1: 016001.

[30] B. Qiang, A. M. Dubrovkin, H. N. S. Krishnamoorthy, Q. Wang, C. Soci, Y. Zhang, J. Teng, Q. J. Wang. High Q-factor controllable phononic modes in hybrid phononic-dielectric structures. Adv. Photon., 2019, 1: 026001.

[31] L. Gu, H. Fang, J. Li, L. Fang, S. J. Chua, J. Zhao, X. Gan. A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator. Nanophotonics, 2019, 8: 841-848.

[32] J. P. Long, B. S. Simpkins, D. J. Rowenhorst, P. E. Pehrsson. Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett., 2007, 7: 831-836.

[33] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293: 1455-1457.

[34] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, P. Yang. Tunable nanowire nonlinear optical probe. Nature, 2007, 447: 1098-1101.

[35] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon., 2019, 1: 024002.

[36] B. Fang, H. Li, S. Zhu, T. Li. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photon. Res., 2020, 8: 1296-1300.

[37] H. He, X. Zhang, X. Yan, L. Huang, C. Gu, M. L. Hu, X. M. Ren, C. Wang. Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources. Appl. Phys. Lett., 2013, 103: 143110.

[38] M. L. Ren, R. Agarwal, W. Liu, R. Agarwal. Crystallographic characterization of II-VI semiconducting nanostructures via optical second harmonic generation. Nano Lett., 2015, 15: 7341-7346.

[39] L. Fang, Q. Yuan, H. Fang, X. Gan, J. Li, T. Wang, Q. Zhao, W. Jie, J. Zhao. Multiple optical frequency conversions in few-layer GaSe assisted by a photonic crystal cavity. Adv. Opt. Mater., 2018, 6: 1800698.

[40] W. J. Lee, H. Kim, A. C. Farrell, P. Senanayake, D. L. Huffaker. Nanopillar array band-edge laser cavities on silicon-on-insulator for monolithic integrated light sources. Appl. Phys. Lett., 2016, 108: 081108.

Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 11001734.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!