红外与毫米波学报, 2019, 38 (2): 02195, 网络出版: 2019-05-10  

基于单谐振光参量振荡器产生可调谐中红外双频激光的研究

Tunable Mid-IR dual frequency laser based on a single-resonant optical parametric oscillator
作者单位
1 北京理工大学 光电学院, 北京 100081
2 精密光电测试仪器及技术北京市重点实验室, 北京 100081
引用该论文

李坤, 杨苏辉, 王欣, 李卓, 张金英. 基于单谐振光参量振荡器产生可调谐中红外双频激光的研究[J]. 红外与毫米波学报, 2019, 38(2): 02195.

LI Kun, YANG Su-Hui, WANG Xin, LI Zhuo, ZHANG Jin-Ying. Tunable Mid-IR dual frequency laser based on a single-resonant optical parametric oscillator[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02195.

参考文献

[1] Vainio M, Peltola J, Persijn S, et al. Singly resonant cw OPO with simple wavelength tuning[J]. Optics Express, 2008, 16(15):11141-11146.

[2] Groot M L, Wilderen L J G W V, Larsen D S, et al. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy.[J]. Biochemistry, 2003, 42(34):10054-10059.

[3] GUO Jing, HE Guang-Yuan, JIAO Zhong-Xing, et al. 2.1 μm optical parametric oscillator with high average power and narrow linewidth [J]. J. Infrared Millim.Waves (郭靖, 何广源, 焦中兴,等. 高功率窄线宽2.1 μm光学参量振荡器. 红外与毫米波学报) 2014, 33(6):625-628.

[4] DAI Hong, CHEN Chao-Jie. Implementation of helicopter airborne mid-ir laser directional interference [J]. Journal of ordnance equipment engineering , (代红, 陈超. 直升机机载中红外激光定向干扰实现途径. 兵器装备工程学报) 2011, 32(1):114-116.

[5] WANG Ling-Fang. Formaldehyde and methane spectroscopy measurements based on Mid-IR quantum cascade laser system[J]J. Infrared Millim.Waves (王玲芳. 基于中红外量子级联激光器系统的甲醛和甲烷光谱检测. 红外与毫米波学报) 2014, 33(6):591-597.

[6] Orphal J, Bergametti G, Beghin B, et al. Monitoring tropospheric pollution using infrared spectroscopy from geostationary orbit[J]. Comptes Rendus Physique, 2005, 6(8):888-896.

[7] Vercesi V, Onori D, Laghezza F, et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures[J]. Optics Letters, 2015, 40(7):1358-61.

[8] Eberhard W L, Schotland R M . Dual-frequency Doppler-lidar method of wind measurement[J]. Applied Optics, 1980, 19(17):2967.

[9] Liu J M, Diaz R, Chan S C. Lidar detection using a dual-frequency source[J]. Optics Letters, 2006, 31(24):3600-3602.

[10] Koch S E, Flamant C, Wilson J W, et al. An atmospheric soliton observed with doppler radar, differential absorption lidar and a molecular Doppler lidar[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(8):1267-1287.

[11] SUN You-Wen, LIU Wen-Qing, XIE Pin-Hua, et al. Measurement of industrial gas pollutant emissions using differential optical absorption spectroscopy[J], Acta Physica Sinica , (孙友文, 刘文清, 谢品华,等. 差分吸收光谱技术在工业污染源烟气排放监测中的应用. 物理学报) 2013, 62(1) 000094-103]

[12] Ramos J A, Osorio M, Belsterli G, et al. Differential optical absorption spectroscopy system for multi purpose applications[C]// Instrumentation and Measurement Technology Conference. IEEE, 2014:1193-1196.

[13] ZHU Shou-Shen, ZHANG Shu-Lian, LIU Wei-Xin, et al. Laser-micro-engraving metho d to mo dify frequency difference of two-frequency He-Ne lasers[J]Acta Physica Sinica,(朱守深, 张书练, 刘维新,等. He-Ne双频激光器频差的激光内雕赋值法. 物理学报)2014, 63(6):159-163.

[14] Mckay A, Dawes J, Dekker P, et al. A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation[C]// International Topical Meeting on Microwave Photonics. IEEE, 2005:161-164.

[15] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes.[J]. Optics Express, 2014, 22(15):17673.

[16] Rolland A, Brunel M, Loas G, et al. Beat note stabilization of a 10–60 GHz dual polarization Nd:YAG microchip laser through optical down conversion[C]// Lasers and Electro-Optics Europe. IEEE, 2011:1-1.

[17] Le G J, Morvan L, Alouini M, et al. Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability.[J]. Optics Letters, 2007, 32(9):1090.

[18] Kim M S, Kim S W. Two-longitudinal-mode He-Ne laser for heterodyne interferometers to measure displacement[J]. Appl Opt, 2002, 41(28):5938-5942.

[19] HE Tao, YANG Su-Hui, ZHAO Chang-Ming, et al. High power tunable beat frequency signal by all fiber dual-frequency amplification[J]. High Power Laser and Particle Beams,(何滔, 杨苏辉, 赵长明,等. 高功率可调谐双频激光全光纤放大实验研究. 强激光与粒子束) 2014, 26(12):26121006.

[20] ZHENG Xiong-Hua, HE Guang-Yuan, JIAO Zhong-Xing, et al. Stable, high-average-power, continuous-wave singly resonant optical parametric oscillation based on angle-polished MgO:PPLN[J]. J. Infrared Millim.Waves,(郑雄桦, 何广源, 焦中兴,等. 基于角度切割MgO:PPLN晶体的高平均功率、稳定的连续波单振荡光学参量振荡器. 红外与毫米波学报) 2015, 34(6):684-687.

[21] Shukla M K, Maji P S, Das R. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator[J]. Optics Letters, 2016, 41(13):3033.

[22] Yang J F , Liu S D , He J L, et al. Tunable simultaneous dual-wavelength laser at 1.9 and 1.7 μm based on KTiOAsO4 optical parametric oscillator[J]. Laser Physics Letters, 2011, 8(1):28-31.

[23] Chen T , Wu B , Liu W , et al. Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate.[J]. Optics Letters, 2011, 36(6):921-3.

[24] Zhao Sheng-Zhi. Nonlinear optics[M]. Jinan, Shandong university press,赵圣之. 非线性光学. 济南, 山东大学出版社), 2007:139.

[25] Bjorkholm J E. Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators[J]. IEEE Journal of Quantum Electronics, 1971, 7(3):109-118.

李坤, 杨苏辉, 王欣, 李卓, 张金英. 基于单谐振光参量振荡器产生可调谐中红外双频激光的研究[J]. 红外与毫米波学报, 2019, 38(2): 02195. LI Kun, YANG Su-Hui, WANG Xin, LI Zhuo, ZHANG Jin-Ying. Tunable Mid-IR dual frequency laser based on a single-resonant optical parametric oscillator[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02195.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!