光学学报, 2018, 38 (4): 0414001, 网络出版: 2018-07-10  

Q CO2激光功率放大器的输出特性 下载: 589次

Output Characteristics of Q-Switched CO2 Laser Power Amplifier
作者单位
1 中国科学院电子学研究所, 北京 100190
2 中国科学院大学, 北京 100049
引用该论文

柯常军, 钟艳红, 李丹阳, 万磊, 吴谨. 调Q CO2激光功率放大器的输出特性[J]. 光学学报, 2018, 38(4): 0414001.

Changjun Ke, Yanhong Zhong, Danyang Li, Lei Wan, Jin Wu. Output Characteristics of Q-Switched CO2 Laser Power Amplifier[J]. Acta Optica Sinica, 2018, 38(4): 0414001.

参考文献

[1] Weingarten C, Uluz E, Schmickler A, et al. Glass processing with pulsed CO2 laser radiation[J]. Applied Optics, 2017, 56(4): 777-783.

    Weingarten C, Uluz E, Schmickler A, et al. Glass processing with pulsed CO2 laser radiation[J]. Applied Optics, 2017, 56(4): 777-783.

[2] Meyer B J, Staupendahl G, Müller F A, et al. Sensitive ablation of brittle materials with pulsed CO2 laser radiation[J]. Journal of Laser Application, 2016, 28(1): 012002.

    Meyer B J, Staupendahl G, Müller F A, et al. Sensitive ablation of brittle materials with pulsed CO2 laser radiation[J]. Journal of Laser Application, 2016, 28(1): 012002.

[3] Wlodarczyk K L, Weston N J, Ardron M, et al. Direct CO2 laser-based generation of holographic structures on the surface of glass[J]. Optics Express, 2016, 24(2): 1447-1462.

    Wlodarczyk K L, Weston N J, Ardron M, et al. Direct CO2 laser-based generation of holographic structures on the surface of glass[J]. Optics Express, 2016, 24(2): 1447-1462.

[4] Kiyko V. Powerful pulsed self-seeding CO2 laser: 9307052[P].2016-02-08.

    Kiyko V. Powerful pulsed self-seeding CO2 laser: 9307052[P].2016-02-08.

[5] Piltingsrud H V. CO2 laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses[J]. Applied Optics, 1991, 30(27): 3952-3963.

    Piltingsrud H V. CO2 laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses[J]. Applied Optics, 1991, 30(27): 3952-3963.

[6] 谢冀江, 潘其坤, 李殿军, 等. 声光调Q CO2激光器的理论计算和实验研究[J]. 中国激光, 2011, 38(2): 0202004.

    谢冀江, 潘其坤, 李殿军, 等. 声光调Q CO2激光器的理论计算和实验研究[J]. 中国激光, 2011, 38(2): 0202004.

    Xie J J, Pan Q K, Li D J, et al. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser[J]. Chinese Journal of Lasers, 2011, 38(2): 0202004.

    Xie J J, Pan Q K, Li D J, et al. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser[J]. Chinese Journal of Lasers, 2011, 38(2): 0202004.

[7] SmithK, Thomson RM. Computer modeling of gas lasers[M]. Boston: Springer, 1978: 25- 78.

    SmithK, Thomson RM. Computer modeling of gas lasers[M]. Boston: Springer, 1978: 25- 78.

[8] Soukieh M, Ghani B A, Hammadi M. Mathematical modeling of CO2 TEA laser[J]. Optics & Laser Technology, 1999, 30(8): 451-457.

    Soukieh M, Ghani B A, Hammadi M. Mathematical modeling of CO2 TEA laser[J]. Optics & Laser Technology, 1999, 30(8): 451-457.

[9] Wu J, Ke C J, Wang D L, et al. Mathematical modeling of tunable TEA CO2 lasers[J]. Optics & Laser Technology, 2007, 39(5): 1033-1039.

    Wu J, Ke C J, Wang D L, et al. Mathematical modeling of tunable TEA CO2 lasers[J]. Optics & Laser Technology, 2007, 39(5): 1033-1039.

[10] 丁长林, 万重怡. 脉冲CO2激光器的多频动力学模型[J]. 物理学报, 2006, 55(3): 1165-1170.

    丁长林, 万重怡. 脉冲CO2激光器的多频动力学模型[J]. 物理学报, 2006, 55(3): 1165-1170.

    Ding C L, Wan C Y. Multifrequency dynamical model of pulsed CO2 lasers[J]. Acta Physica Sinica, 2006, 55(3): 1165-1170.

    Ding C L, Wan C Y. Multifrequency dynamical model of pulsed CO2 lasers[J]. Acta Physica Sinica, 2006, 55(3): 1165-1170.

[11] Midorikawa K, Wakabayashi K, Nakamura K, et al. Discharge parameters of a high-pressure, ultraviolet-preionized, transversely excited CO2 laser[J]. Journal of Applied Physics, 1982, 53(5): 3410-3417.

    Midorikawa K, Wakabayashi K, Nakamura K, et al. Discharge parameters of a high-pressure, ultraviolet-preionized, transversely excited CO2 laser[J]. Journal of Applied Physics, 1982, 53(5): 3410-3417.

[12] Tou T Y, Beak K W, Chen Y H. One-dimensional modeling of TEA CO2 lasers[J]. Optics & Laser Technology, 1996, 28(3): 183-186.

    Tou T Y, Beak K W, Chen Y H. One-dimensional modeling of TEA CO2 lasers[J]. Optics & Laser Technology, 1996, 28(3): 183-186.

[13] Bahrampour A, Ganjovi A A. Theoretical analysis of electrical transient behavior in TEA CO2 laser with dielectric corona pre-ionization[J]. Journal of Physics D, 2003, 36(20): 2487-2497.

    Bahrampour A, Ganjovi A A. Theoretical analysis of electrical transient behavior in TEA CO2 laser with dielectric corona pre-ionization[J]. Journal of Physics D, 2003, 36(20): 2487-2497.

[14] Galeev RS, Safioulline RK. Numerical simulation of the processes in fast flow gas discharge CO2 lasers[C]. SPIE, 2004, 5483: 214- 223.

    Galeev RS, Safioulline RK. Numerical simulation of the processes in fast flow gas discharge CO2 lasers[C]. SPIE, 2004, 5483: 214- 223.

[15] Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures[J]. Journal of Applied Physics, 1973, 44(10): 4664-4671.

    Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures[J]. Journal of Applied Physics, 1973, 44(10): 4664-4671.

[16] Kumar M, Khare J, Nath A K. Numerical solution of Boltzmann transport equation for TEA CO2 laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime[J]. Optics & Laser Technology, 2007, 39(1): 86-93.

    Kumar M, Khare J, Nath A K. Numerical solution of Boltzmann transport equation for TEA CO2 laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime[J]. Optics & Laser Technology, 2007, 39(1): 86-93.

[17] Thomson R M, Smith K, Davis A R. Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields[J]. Computer Physics Communications, 1976, 11(3): 369-383.

    Thomson R M, Smith K, Davis A R. Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields[J]. Computer Physics Communications, 1976, 11(3): 369-383.

[18] 吴谨. 光栅调谐TEA CO2激光器理论计算模型[J]. 光学学报, 2004, 24(4): 472-476.

    吴谨. 光栅调谐TEA CO2激光器理论计算模型[J]. 光学学报, 2004, 24(4): 472-476.

    Wu J. Theoretical mode on calculating grating tuned TEA CO2 laser[J]. Acta Optica Sinica, 2004, 24(4): 472-476.

    Wu J. Theoretical mode on calculating grating tuned TEA CO2 laser[J]. Acta Optica Sinica, 2004, 24(4): 472-476.

柯常军, 钟艳红, 李丹阳, 万磊, 吴谨. 调Q CO2激光功率放大器的输出特性[J]. 光学学报, 2018, 38(4): 0414001. Changjun Ke, Yanhong Zhong, Danyang Li, Lei Wan, Jin Wu. Output Characteristics of Q-Switched CO2 Laser Power Amplifier[J]. Acta Optica Sinica, 2018, 38(4): 0414001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!