Photonics Research, 2020, 8 (4): 04000475, Published Online: Mar. 18, 2020   

Self-accelerated optical activity in free space induced by the Gouy phase

Author Affiliations
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Northwestern Polytechnical University Ming De College, Xi’an 710124, China
3 e-mail: pengli@nwpu.edu.cn
4 e-mail: jlzhao@nwpu.edu.cn
Copy Citation Text

Peng Li, Xinhao Fan, Dongjing Wu, Sheng Liu, Yu Li, Jianlin Zhao. Self-accelerated optical activity in free space induced by the Gouy phase[J]. Photonics Research, 2020, 8(4): 04000475.

References

[1] P. Yu, J. Li, C. Tang, H. Cheng, Z. Liu, Z. Li, Z. Liu, C. Gu, J. Li, S. Chen, J. Tian. Controllable optical activity with non-chiral plasmonic metasurfaces. Light Sci. Appl., 2016, 5: e16096.

[2] E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, N. I. Zheludev. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 2009, 102: 113902.

[3] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 2009, 1: 1-57.

[4] X. Wang, J. Chen, Y. Li, J. Ding, C. Guo, H. Wang. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 2010, 105: 253602.

[5] M. Zhong, L. Gong, D. Li, J. Zhou, Z. Wang, Y. Li. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl. Phys. Lett., 2014, 105: 181112.

[6] G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, A. E. Willner. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 2015, 40: 1980-1983.

[7] X. Gao, Y. Pan, S. Li, D. Wang, Y. Li, C. Tu, H. Wang. Vector optical fields broken in the spatial frequency domain. Phys. Rev. A, 2016, 93: 033834.

[8] R. D. Halina, F. Andrew, M. V. Berry, M. R. Dennis, L. A. David, M. Masud, D. Cornelia, A. Christina, B. Peter, B. Thomas, K. Ebrahim, M. Lorenzo, P. Miles, R.-M. Monika, M. L. Natalia, P. B. Nicholas, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, W. N. Tyler, B. Mark, G. Reuven, B. S. Alexander, R. Jacquiline, G. W. Andrew, F. Robert, E. W. Alan, X. Guodong, M. Benjamin, M. W. Andrew. Roadmap on structured light. J. Opt., 2017, 19: 013001.

[9] J. Wang, X. Yang, Y. Li, Y. Chen, M. Cao, D. Wei, H. Gao, F. Li. Optically spatial information selection with hybridly polarized beam in atomic vapor. Photon. Res., 2018, 6: 451-456.

[10] B. Gu, B. Wen, G. Rui, Y. Xue, Q. Zhan, Y. Cui. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media. Opt. Lett., 2016, 41: 1566-1569.

[11] B. Wei, S. Qi, S. Liu, P. Li, Y. Zhang, L. Han, J. Zhong, W. Hu, Y. Lu, J. Zhao. Auto-transition of vortex- to vector-Airy beams via liquid crystal q-Airy-plates. Opt. Express, 2019, 27: 18848-18857.

[12] I. Moreno, J. A. Davis, M. M. Sánchez-López, K. Badham, D. M. Cottrell. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Opt. Lett., 2015, 40: 5451-5454.

[13] P. Li, Y. Zhang, S. Liu, L. Han, H. Cheng, F. Yu, J. Zhao. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering. Opt. Lett., 2016, 41: 4811-4814.

[14] J. A. Davis, I. Moreno, K. Badham, M. M. Sánchez-López, D. M. Cottrell. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance. Opt. Lett., 2016, 41: 2270-2273.

[15] S. Fu, S. Zhang, C. Gao. Bessel beams with spatial oscillating polarization. Sci. Rep., 2016, 6: 30765.

[16] P. Li, D. Wu, Y. Zhang, S. Liu, Y. Li, S. Qi, J. Zhao. Polarization oscillating beams constructed by copropagating optical frozen waves. Photon. Res., 2018, 6: 756-761.

[17] LiuS.QiS.LiP.WeiB.ChenP.HuW.ZhangY.GanX.ZhangP.LuY.ChenZ.ZhaoJ., “Optically active beams: non-reciprocal optical activity in free space induced by spin-orbital interaction of light,” arXiv:1908.10008 (2019).

[18] M. Duocastella, C. B. Arnold. Bessel and annular beams for materials processing. Laser Photonics Rev., 2012, 6: 607-621.

[19] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, J. Verbeeck. Observation of the Larmor and Gouy rotations with electron vortex beams. Phys. Rev. Lett., 2013, 110: 093601.

[20] T. C. Petersen, D. M. Paganin, M. Weyland, T. P. Simula, S. A. Eastwood, M. J. Morgan. Unifying interpretations of the Gouy phase anomaly for electron waves. Phys. Rev. A, 2014, 89: 063801.

[21] R. Ducharme, I. G. da Paz. Gouy phase for relativistic quantum particles. Phys. Rev. A, 2015, 92: 023853.

[22] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[23] J. Mendoza-Hernández, M. L. Arroyo-Carrasco, M. D. Iturbe-Castillo, S. Chávez-Cerda. Laguerre–Gauss beams versus Bessel beams showdown: peer comparison. Opt. Lett., 2015, 40: 3739-3742.

[24] A. Rubinowicz. On the anomalous propagation of phase in the focus. Phys. Rev., 1938, 54: 931-936.

[25] Z. Derrar Kaddour, A. Taleb, K. Ait-Ameur, G. Martel. Revisiting Gouy phase. Opt. Commun., 2007, 280: 256-263.

[26] P. Martelli, M. Tacca, A. Gatto, G. Moneta, M. Martinelli. Gouy phase shift in nondiffracting Bessel beams. Opt. Express, 2010, 18: 7108-7120.

[27] S. Feng, H. G. Winful. Physical origin of the Gouy phase shift. Opt. Lett., 2001, 26: 485-487.

[28] M. Neugebauer, S. Grosche, S. Rothau, G. Leuchs, P. Banzer. Lateral spin transport in paraxial beams of light. Opt. Lett., 2016, 41: 3499-3502.

[29] Y. Zhang, X. Guo, L. Han, P. Li, S. Liu, H. Cheng, J. Zhao. Gouy phase induced polarization transition of focused vector vortex beams. Opt. Express, 2017, 25: 25725-25733.

[30] M. M. Sánchez-López, J. Davis, I. Moreno, A. Cofré, D. Cottrell. Gouy phase effects on propagation of pure and hybrid vector beams. Opt. Express, 2019, 27: 2374-2386.

[31] A. A. Tovar. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J. Opt. Soc. Am. A, 1998, 15: 2705-2711.

[32] T. Čižmár, K. Dholakia. Tunable Bessel light modes: engineering the axial propagation. Opt. Express, 2009, 17: 15558-15570.

[33] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 2016, 41: 2205-2208.

[34] G. Milione, H. I. Sztul, D. A. Nolan, R. R. Alfano. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 2011, 107: 053601.

[35] X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, D. Fan. Hybrid-order Poincaré sphere. Phys. Rev. A, 2015, 91: 023801.

[36] G. M. Philip, V. Kumar, G. Milione, N. K. Viswanathan. Manifestation of the Gouy phase in vector-vortex beams. Opt. Lett., 2012, 37: 2667-2669.

[37] F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, E. Santamato. Generation and dynamics of optical beams with polarization singularities. Opt. Express, 2013, 21: 8815-8820.

[38] P. Li, Y. Zhang, S. Liu, H. Cheng, L. Han, D. Wu, J. Zhao. Generation and self-healing of vector Bessel–Gauss beams with variant state of polarizations upon propagation. Opt. Express, 2017, 25: 5821-5831.

[39] B. Gu, Y. Pan, G. Rui, D. Xu, Q. Zhan, Y. Cui. Polarization evolution characteristics of focused hybridly polarized vector fields. Appl. Phys. B, 2014, 117: 915-926.

[40] C. Schulze, F. S. Roux, A. Dudley, R. Rop, M. Duparré, A. Forbes. Accelerated rotation with orbital angular momentum modes. Phys. Rev. A, 2015, 91: 043821.

Peng Li, Xinhao Fan, Dongjing Wu, Sheng Liu, Yu Li, Jianlin Zhao. Self-accelerated optical activity in free space induced by the Gouy phase[J]. Photonics Research, 2020, 8(4): 04000475.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!