半导体光电, 2016, 37 (5): 707, 网络出版: 2016-11-18   

双层氮化硅减反、钝化结构对多晶硅太阳电池性能的影响

Effect of Double-layer Sinx Antireflection/Passivation Coating on Performance of Multi-crystalline Silicon Solar Cells
作者单位
1 湖州师范学院 应用物理系, 浙江 湖州 313000
2 浙江省贝盛光伏股份有限公司, 浙江 湖州 313008
引用该论文

吕文辉, 何一峰, 龚熠, 陆波. 双层氮化硅减反、钝化结构对多晶硅太阳电池性能的影响[J]. 半导体光电, 2016, 37(5): 707.

LV Wenhui, HE Yifeng, GONG Yi, LU Bo. Effect of Double-layer Sinx Antireflection/Passivation Coating on Performance of Multi-crystalline Silicon Solar Cells[J]. Semiconductor Optoelectronics, 2016, 37(5): 707.

参考文献

[1] Green M A.Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients[J]. Solar Energy Materials & Solar Cells, 2008, 92(11):1305-1310.

[2] Schinke C,Peest P C, Schmidt J, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Advances, 2015, 5: 067168.

[3] Seidel H.An isotropic etching of crystalline silicon in alkaline solutions[J]. J. the Electrochemical Society, 1990, 137(17): 3612-3626.

[4] Panek P,Lipinski M, Dutkiewicz J. Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells[J]. J. Materials Science, 2005, 40(6):1459-1463.

[5] Ye X,Zou S, Chen K, et al. 18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture[J]. Adv. Functional Materials, 2014, 24(42): 6708-6716.

[6] Zhu J, Yu Z F, Burkhard G F, et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone[J]. Nano Lett., 2009, 9(1): 279-282.

[7] Huang Y F,Chattopadhyay S, Jen Y J, et al. Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nat. Nanotechnol., 2007, 2(12): 770-774.

[8] Duttagupta S,Ma F, Hoex B, et al. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling[J]. Energy Procedia, 2012, 15(17):78-83.

[9] Martinet C,Paillard V, Gagnaire A, et al. Deposition of SiO2, and TiO2, thin films by plasma enhanced chemical vapor deposition for antireflection coating[J]. J. Non-Crystalline Solids, 1997, 216(1):77-82.

[10] Vallejo B,Gonzalez-Maas M, Martínez-López J, et al. Characterization of TiO2, deposited on textured silicon wafers by atmospheric pressure chemical vapour deposition[J]. Solar Energy Materials & Solar Cells, 2005, 86(3): 299-308.

[11] Kessels W E,Schultz O, Benick J, et al. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl. Phys. Lett., 2008, 92: 253504.

[12] Zhao J,Green M. Optimized antireflection coatings for high-efficiency silicon solar cells[J]. IEEE Trans. Electron Devices, 1991, 38(8): 1925-1934.

[13] Yuan H R,Xiang X, Chang X, et al. Double layer antireflection coaticng on Al0.8Ga(0.2)As/GaAs solar cells[J]. Acta Energiae Solaris Sinica, 2000, 21: 371-378.

[14] Sinton R A,Cuevas A. Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data[J]. Appl. Phys. Lett., 1996, 69(17): 2510-2512.

[15] Kane D E,Swanson R M. Measurement of the emitter saturation current by a contactless photoconductivity decay method[J]. 1985, 30(2): 578-583.

吕文辉, 何一峰, 龚熠, 陆波. 双层氮化硅减反、钝化结构对多晶硅太阳电池性能的影响[J]. 半导体光电, 2016, 37(5): 707. LV Wenhui, HE Yifeng, GONG Yi, LU Bo. Effect of Double-layer Sinx Antireflection/Passivation Coating on Performance of Multi-crystalline Silicon Solar Cells[J]. Semiconductor Optoelectronics, 2016, 37(5): 707.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!