激光与光电子学进展, 2020, 57 (11): 111420, 网络出版: 2020-06-02   

基于飞秒激光刻写光纤光栅的研究进展 下载: 2663次

Development of Fiber Gratings Inscribed by Femtosecond Laser
作者单位
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
引用该论文

李宏业, 饶斌裕, 赵晓帆, 胡琪浩, 王蒙, 王泽锋. 基于飞秒激光刻写光纤光栅的研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111420.

Hongye Li, Binyu Rao, Xiaofan Zhao, Qihao Hu, Meng Wang, Zefeng Wang. Development of Fiber Gratings Inscribed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111420.

参考文献

[1] Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10): 647-649.

[2] Xu L, Ge J, Patel J H, et al. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing[J]. Optics Express, 2017, 25(20): 24727-24734.

[3] Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 2018, 10512: 105120C.

[4] Minato N, Kutsuzawa S, Sasaki K, et al. Field trial of time-spreading and wavelength-hopping OCDM transmission using FBG en/decoders[J]. Optics Express, 2006, 14(13): 5853-5859.

[5] 薛渊泽, 王学锋, 罗明明, 等. 再生光纤布拉格光栅的研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020007.

    Xue Y Z, Wang X F, Luo M M, et al. Review of regenerated fiber Bragg grating[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020007.

[6] 郭艳城, 刘艳格, 王志, 等. 少模光纤长周期光栅双峰谐振及双参量传感[J]. 光学学报, 2018, 38(9): 0906003.

    Guo Y C, Liu Y G, Wang Z, et al. Dual resonance and dual-parameter sensor of few-mode fiber long period grating[J]. Acta Optica Sinica, 2018, 38(9): 0906003.

[7] 廖常锐, 何俊, 王义平. 飞秒激光制备光纤布拉格光栅高温传感器研究[J]. 光学学报, 2018, 38(3): 0328009.

    Liao C R, He J, Wang Y P. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser[J]. Acta Optica Sinica, 2018, 38(3): 0328009.

[8] PoulinM, VasseurY, TrepanierF, et al. Apodization of a multichannel dispersion compensator by phase modulation coding of a phase mask[C]∥OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005., March 6-11, 2005. Anaheim, CA, USA. IEEE, 2005.

[9] Davis D D, Gaylord T K, Glytsis E N, et al. Long-period fibre grating fabrication with focusedCO2 laser pulses[J]. Electronics Letters, 1998, 34(3): 302.

[10] 王义平. 新型长周期光纤光栅特性研究[D]. 重庆: 重庆大学, 2003.

    Wang YP. Study on the characteristics of new long period fiber gratings[D]. Chongqing: Chongqing University, 2003.

[11] Zhao Y H, Liu Z Y, Liu Y Q, et al. Ultra-broadband fiber mode converter based on apodized phase-shifted long-period gratings[J]. Optics Letters, 2019, 44(24): 5905-5908.

[12] 田振男. 基于飞秒激光直写微光学元件的设计与制备研究[D]. 长春: 吉林大学, 2017.

    Tian ZN. Design and fabrication of micro-optical components based on femtosecond laser direct writing[D]. Changchun: Jilin University, 2017.

[13] Dai Z J, Su Q, Wang Y F, et al. Fast fabrication of THz devices by femtosecond laser direct writing with a galvanometer scanner[J]. Laser Physics, 2019, 29(6): 065301.

[14] Zhang Y F, Lin C P, Liao C R, et al. Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurement[J]. Optics Letters, 2018, 43(18): 4421-4424.

[15] Kondo Y, Nouchi K, Mitsuyu T, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 1999, 24(10): 646-648.

[16] Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170.

[17] Åslund M L, Nemanja J, Groothoff N, et al. Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings[J]. Optics Express, 2008, 16(18): 14248-14254.

[18] Thomas J, Jovanovic N. BeckerR G, et al. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra[J]. Optics Express, 2011, 19(1): 325-341.

[19] Williams R J, Jovanovic N, Marshall G D, et al. Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss[J]. Optics Express, 2012, 20(12): 13451-13456.

[20] Zhang C Z, Yang Y H, Wang C, et al. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability[J]. Optics Express, 2016, 24(4): 3981-3988.

[21] Wang Y P, Li Z L, Liu S, et al. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology[J]. Journal of Lightwave Technology, 2019, 37(10): 2185-2193.

[22] Liu X Y, Wang Y P, Li Z L, et al. Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology[J]. Optics Letters, 2019, 44(21): 5121-5124.

[23] Wolf A, Dostovalov A, Bronnikov K, et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 2019, 27(10): 13978-13990.

[24] Zhou K M, Dubov M, Mou C B, et al. Line-by-line fiber Bragg grating made by femtosecond laser[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1190-1192.

[25] Chah K, Kinet D, Wuilpart M, et al. Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber[J]. Optics Letters, 2013, 38(4): 594-596.

[26] Huang B, Shu X W. Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG[J]. Optics Express, 2016, 24(16): 17670-17679.

[27] Zhu F, Wang Y P, Zhang Z, et al. Taper embedded phase-shifted fiber Bragg grating fabricated by femtosecond laser line-by-line inscription[J]. IEEE Photonics Journal, 2018, 10(1): 1-8.

[28] Yang K M, Liao C R, Liu S, et al. Optical fiber tag based on an encoded fiber Bragg grating fabricated by femtosecond laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1474-1479.

[29] Theodosiou A, Lacraz A, Polis M, et al. Modified fs-laser inscribed FBG array for rapid mode shape capture of free-free vibrating beams[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1509-1512.

[30] Ioannou A, Theodosiou A, Caucheteur C, et al. Direct writing of plane-by-plane tilted fiber Bragg gratings using a femtosecond laser[J]. Optics Letters, 2017, 42(24): 5198-5201.

[31] Theodosiou A, Lacraz A, Stassis A, et al. Plane-by-plane femtosecond laser inscription method for single-peak Bragg gratings in multimode CYTOP polymer optical fiber[J]. Journal of Lightwave Technology, 2017, 35(24): 5404-5410.

[32] Leal-Junior A G, Theodosiou A, Diaz C R, et al. Simultaneous measurement of axial strain, bending and torsion with a single fiber Bragg grating in CYTOP fiber[J]. Journal of Lightwave Technology, 2019, 37(3): 971-980.

[33] Theodosiou A, Aubrecht J, Peterka P, et al. Er/Yb double-clad fiber laser with fs-laser inscribed plane-by-plane chirped FBG laser mirrors[J]. IEEE Photonics Technology Letters, 2019, 31(5): 409-412.

[34] Huang Z N, Huang Q Q, Theodosiou A, et al. All-fiber passively mode-locked ultrafast laser based on a femtosecond-laser-inscribed in-fiber Brewster device[J]. Optics Letters, 2019, 44(21): 5177-5180.

[35] Lu P, Mihailov S J, Ding H M, et al. Plane-by-plane inscription of grating structures in optical fibers[J]. Journal of Lightwave Technology, 2018, 36(4): 926-931.

[36] Williams R J, Krämer R G, Nolte S, et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique[J]. Optics Letters, 2013, 38(11): 1918-1920.

[37] Antipov S, Ams M, Williams R J, et al. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings[J]. Optics Express, 2016, 24(1): 30-40.

[38] Mihailov S J, Smelser C W, Lu P, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Optics Letters, 2003, 28(12): 995-997.

[39] Grobnic D, Smelser C W, Mihailov S J, et al. Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1864-1866.

[40] HeJ, Wang YP, Liao CR, et al. Inscription and improvement of novel fiber Bragg gratings by 800 nm femtosecond laser through a phase mask[C]∥Asia Pacific Optical Sensors Conference, Shanghai. Washington, D.C.: OSA, 2016.

[41] Yang K M, He J, Liao C R, et al. Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing[J]. Journal of Lightwave Technology, 2017, 35(21): 4670-4676.

[42] Wang C, He J, Zhang J C, et al. Bragg gratings inscribed in selectively inflated photonic crystal fibers[J]. Optics Express, 2017, 25(23): 28442-28450.

[43] 陈超. 耐高温光纤光栅的飞秒激光制备及其应用研究[D]. 长春: 吉林大学, 2014.

    ChenC. Fabrication of robust fiber gratings by femtosecond laser and their applications[D]. Changchun: Jilin University, 2014.

[44] Jiang Y J, Liu C, Zhang W D, et al. Multi-parameter sensing using a fiber Bragg grating inscribed in dual-mode fiber[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1607-1610.

[45] Feng D Y, Albert J, Jiang Y J, et al. Symmetry selective cladding modes coupling in ultrafast-written fiber Bragg gratings in two-mode fiber[J]. Optics Express, 2019, 27(13): 18410-18420.

[46] Baghdasaryan T, Geernart T, Morana A, et al. IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens[J]. Optics Express, 2018, 26(11): 14741-14751.

[47] Montz Z, Shirakov A, Ami U B, et al. Inscribing an output coupler grating directly through the fiber coating with a 266 nm femtosecond laser[J]. Optics Letters, 2019, 44(1): 13-16.

[48] Abdukerim N, Grobnic D, Hnatovsky C, et al. High-temperature stable fiber Bragg gratings with ultrastrong cladding modes written using the phase mask technique and an infrared femtosecond laser[J]. Optics Letters, 2020, 45(2): 443-446.

[49] Halstuch A, Shamir A, Ishaaya A A. Femtosecond inscription of fiber Bragg gratings through the coating with a Low-NA lens[J]. Optics Express, 2019, 27(12): 16935-16944.

[50] Thomas J, Wikszak E, Clausnitzer T, et al. Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique[J]. Applied Physics A, 2006, 86(2): 153-157.

[51] Wikszak E, Thomas J, Burghoff J, et al. Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating[J]. Optics Letters, 2006, 31(16): 2390-2392.

[52] Kramer RG, LiemA, VoigtlanderC, et al. 514 W monolithic fiber laser with a femtosecond inscribed fiber Bragg grating[C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013. Munich, Germany. IEEE, 2013.

[53] Krämer R G, Matzdorf C, Liem A, et al. Femtosecond written fiber Bragg gratings in ytterbium-doped fibers for fiber lasers in the kilowatt regime[J]. Optics Letters, 2019, 44(4): 723-726.

[54] Talbot L, Paradis P, Bernier M. All-fiber laser pump reflector based on a femtosecond-written inner cladding Bragg grating[J]. Optics Letters, 2019, 44(20): 5033-5036.

李宏业, 饶斌裕, 赵晓帆, 胡琪浩, 王蒙, 王泽锋. 基于飞秒激光刻写光纤光栅的研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111420. Hongye Li, Binyu Rao, Xiaofan Zhao, Qihao Hu, Meng Wang, Zefeng Wang. Development of Fiber Gratings Inscribed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111420.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!