发光学报, 2018, 39 (12): 1687, 网络出版: 2018-12-25  

柔性有机/无机杂化钙钛矿太阳电池研究进展

Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells
作者单位
1 保定学院 汽车与电子工程学院, 河北 保定 071002
2 河北大学 物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
摘要
柔性太阳电池具有重量轻、可卷对卷连续生产、可卷曲、不易破碎、便于携带和可穿戴等特点, 可在多种领域为人们提供电力, 具有非常广泛的应用前景。近年来, 在基于刚性衬底的有机/无机杂化钙钛矿太阳电池(PSC)展示了出色的功率转换效率之后, 柔性PSC研究也受到了人们的广泛关注。目前, 柔性PSC的转换效率已经达到了18.1%。本文介绍了近年来柔性PSC领域的相关研究工作, 综述了已应用于柔性PSC的柔性基底、透明电极和界面传输层等关键材料近来的发展, 并探讨了这些材料应用于柔性PSC时的优势和面临的主要问题, 最后对柔性PSC未来的发展进行了展望。
Abstract
Due to the advantages of light-weight, roll-to-roll processing, bendability, unbreakable, portability and wearability, flexible solar cells can provide people with electricity in various fields and have a very wide range of application prospects. In recent years, inspired by the excellent power conversion efficiency of organic-inorganic hybrid perovskite solar cell (PSC) based on a rigid substrate, flexible PSC has also received widespread attention. At present, the record of conversion efficiency of flexible PSC has reached 18.1%. This review article presents the recent research progress of flexible PSC and summarizes recent development of the key materials including flexible substrates, transparent electrodes and interfacial transport layers applied in flexible PSCs. The advantages and disadvantages of these materials in flexible PSC are discussed. Finally, the future development of flexible PSC is prospected.
参考文献

[1] INTERNATIONAL ENERGY AGENCY. Snapshot of Global Photovoltaic Markets 2017 [R]. 2017-04-19.

[2] KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. [J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.

[3] NATIONAL RENEWABLE ENERGY LABORATORY. Best research-cell efficiencies [EB/OL]. [2018-05-15]. https://www.nrel.gov/pv/assets/images/efficiencychart.png.

[4] ONO L K, JUAREZ-PEREZ E J, QI Y. Progress on perovskite materials and solar cells with mixed cations and halide anions [J]. ACS Appl. Mater. Interf., 2017, 9(36):30197-30246.

[5] KUMAR M H, YANTARA N, DHARANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013, 49(94):11089-11091.

[6] JUNG J W, WILLIAMS S T, JEN K Y. Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments [J]. RSC Adv., 2014, 4(108):62971-62977.

[7] SHIN S S, YANG W S, NOH J H, et al.. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C [J]. Nat. Commun., 2015, 6:7410.

[8] SHIN S S, YANG W S, YEOM E J, et al.. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells [J]. J. Phys. Chem. Lett., 2016, 7(10):1845-1851.

[9] YOON J, SUNG H, LEE G, et al.. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources [J]. Energy Environ. Sci., 2017, 10(1):337-345.

[10] BI C, CHEN B, WEI H, et al.. Efficient flexible solar cell based on composition-tailored hybrid perovskite [J]. Adv. Mater., 2017, 29(30):1605900.

[11] YE M, HONG X, ZHANG F, et al.. Recent advancements in perovskite solar cells: flexibility, stability and large scale [J]. J. Mater. Chem. A, 2016, 4(18):6755-6771.

[12] LEE M, JO Y, KIM D S, et al.. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate [J]. J. Mater. Chem. A, 2015, 3(8):4129-4133.

[13] NEJAND B A, NAZARI P, GHARIBZADEH S, et al.. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate [J]. Chem. Commun., 2017, 53(4):747-750.

[14] HAN G S, LEE S, DUFF M L, et al.. Highly bendable flexible perovskite solar cells on a nanoscale surface cxide layer of titanium metal plates [J]. ACS Appl. Mater. Interfaces, 2018, 10(5):4697-4704.

[15] QIU L, HE S, YANG J, et al.. Fiber-shaped perovskite solar cells with high power conversion efficiency [J]. Small, 2016, 12(18):2419-2424.

[16] DOU B, MILLER E M, CHRISTIANS J A, et al.. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO [J]. J. Phys. Chem. Lett., 2017, 8(19):4960-4966.

[17] ZARDETTO V, BROWN T M, REALE A, et al.. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties [J]. J. Polym. Sci. Part B: Polym. Phys., 2011, 49(9):638-648.

[18] ROLDN-CARMONA C, MALINKIEWICZ O, SORIANO A, et al.. Flexible high efficiency perovskite solar cells [J]. Energy Environ. Sci., 2014, 7(3):994-997.

[19] LI Y, MENG L, YANG Y M, et al.. High-efficiency robust perovskite solar cells on ultrathin flexible substrates [J]. Nat. Commun., 2016, 7:10214.

[20] SEARS K K, FIEVEZ M, GAO M, et al.. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes [J]. Solar RRL, 2017, 1(8):1700059.

[21] LEE E, AHN J, KWON H C, et al.. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection [J]. Adv. Energy Mater., 2018, 8(9):1702182.

[22] JEON I, CUI K, CHIBA T, et al.. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells [J]. J. Am. Chem. Soc., 2015, 137(25):7982-7985.

[23] AITOLA K, SVEINBJRNSSON K, BAENA J P C, et al.. Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells [J]. Energy Environ. Sci., 2015, 9(2):461-466.

[24] JEON I, YOON J, AHN N, et al.. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells [J]. J. Phys. Chem. Lett., 2017, 8(21):5395-5401.

[25] LUO Q, MA H, HOU Q, et al.. All-carbon-electrode-based endurable flexible perovskite solar cells [J]. Adv. Funct. Mater., 2018, 28(11):1706777.

[26] KIM B J, KIM D H, LEE Y Y, et al.. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2015, 8(3):916-921.

[27] POORKAZEM K, LIU D, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell [J]. J. Mater. Chem. A, 2015, 3(17):9241-9248.

[28] CHEN Y, CHEN T, DAI L. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells [J]. Adv. Mater., 2015, 27(6):1053-1059.

[29] KALTENBRUNNER M, ADAM G, GOWACKI E D, et al.. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air [J]. Nat. Mater., 2015, 14(10):1032-1039.

[30] HU X, HUANG Z, ZHOU X, et al.. Wearable large-scale perovskite solar-power source via nanocellular scaffold [J]. Adv. Mater., 2017, 29(42):1703236.

[31] KUMAR M H, YANTARA N, DHARQANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013, 49(94):11089-11091.

[32] LIANG L, HUANG Z, CAI L, et al.. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells [J]. ACS Appl. Mater. Interfaces, 2014, 6(23):20585-20589.

[33] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques [J]. Nat. Photon., 2014, 8(2):133-138.

[34] YANG D, YANG R, REN X, et al.. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater., 2016, 28(26):5206-5213.

[35] WANG J T W, BALL J M, BAREA E M, et al.. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells [J]. Nano Lett., 2013, 14(2):724-730.

[36] LEE J W, LEE T Y, YOO P J, et al.. Rutile TiO2-based perovskite solar cells [J]. J. Mater. Chem. A, 2014, 2(24):9251-9259.

[37] TAN Z K, MOGHADDAM R S, LAI M L, et al.. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9):687-692.

[38] QIU W, PAETZOLD U W, GEHIHAAR R, et al.. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates [J]. J. Mater. Chem. A, 2015, 3(45):22824-22829.

[39] YANG D, YANG R, ZHANG J, et al.. High efficiency flexible perovskite solar cells using superior low temperature TiO2 [J]. Energy Environ. Sci., 2015, 8(11):3208-3214.

[40] KIM B J, DONG H K, LEE Y Y, et al.. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2014, 8(3):916-921.

[41] BAI Y, FANG Y, DENG Y, et al.. Low temperature solution-processed Sb∶SnO2 nanocrystals for efficient planar perovskite solar cells [J]. Chemsuschem, 2016, 9(18):2686-2691.

[42] WANG K, SHI Y, GAO L, et al.. W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle [J]. Nano Energy, 2017, 31:424-431.

[43] DOCAMPO P, BALL J M, DANWICH M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nat. Commun., 2013, 4(7):2761.

[44] MALINKIEWICZ O, YELLA A, YONG H L, et al.. Perovskite solar cells employing organic charge-transport layers [J]. Nat. Photon., 2014, 8(2):128-132.

[45] YOU J, HONG Z, YANG Y, et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2):1674-1680.

[46] PARK J I, JIN H H, PARK S H, et al.. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3, perovskite solar cells [J]. J. Power Sources, 2017, 341:340-347.

[47] QIN P L, HE Q, CHEN C, et al.. High-performance rigid and flexible perovskite solar cells with low-temperature solution-processable binary metal oxide hole-transporting materials [J]. Solar RRL, 2017, 1(8):1700058.

蒋树刚, 魏岳, 刘海旭, 路万兵, 于威. 柔性有机/无机杂化钙钛矿太阳电池研究进展[J]. 发光学报, 2018, 39(12): 1687. JIANG Shu-gang, WEI Yue, LIU Hai-xu, LU Wan-bing, YU Wei. Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018, 39(12): 1687.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!