发光学报, 2018, 39 (12): 1687, 网络出版: 2018-12-25  

柔性有机/无机杂化钙钛矿太阳电池研究进展

Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells
作者单位
1 保定学院 汽车与电子工程学院, 河北 保定 071002
2 河北大学 物理科学与技术学院, 河北省光电信息材料重点实验室, 河北 保定 071002
引用该论文

蒋树刚, 魏岳, 刘海旭, 路万兵, 于威. 柔性有机/无机杂化钙钛矿太阳电池研究进展[J]. 发光学报, 2018, 39(12): 1687.

JIANG Shu-gang, WEI Yue, LIU Hai-xu, LU Wan-bing, YU Wei. Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018, 39(12): 1687.

参考文献

[1] INTERNATIONAL ENERGY AGENCY. Snapshot of Global Photovoltaic Markets 2017 [R]. 2017-04-19.

[2] KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. [J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.

[3] NATIONAL RENEWABLE ENERGY LABORATORY. Best research-cell efficiencies [EB/OL]. [2018-05-15]. https://www.nrel.gov/pv/assets/images/efficiencychart.png.

[4] ONO L K, JUAREZ-PEREZ E J, QI Y. Progress on perovskite materials and solar cells with mixed cations and halide anions [J]. ACS Appl. Mater. Interf., 2017, 9(36):30197-30246.

[5] KUMAR M H, YANTARA N, DHARANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013, 49(94):11089-11091.

[6] JUNG J W, WILLIAMS S T, JEN K Y. Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments [J]. RSC Adv., 2014, 4(108):62971-62977.

[7] SHIN S S, YANG W S, NOH J H, et al.. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C [J]. Nat. Commun., 2015, 6:7410.

[8] SHIN S S, YANG W S, YEOM E J, et al.. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells [J]. J. Phys. Chem. Lett., 2016, 7(10):1845-1851.

[9] YOON J, SUNG H, LEE G, et al.. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources [J]. Energy Environ. Sci., 2017, 10(1):337-345.

[10] BI C, CHEN B, WEI H, et al.. Efficient flexible solar cell based on composition-tailored hybrid perovskite [J]. Adv. Mater., 2017, 29(30):1605900.

[11] YE M, HONG X, ZHANG F, et al.. Recent advancements in perovskite solar cells: flexibility, stability and large scale [J]. J. Mater. Chem. A, 2016, 4(18):6755-6771.

[12] LEE M, JO Y, KIM D S, et al.. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate [J]. J. Mater. Chem. A, 2015, 3(8):4129-4133.

[13] NEJAND B A, NAZARI P, GHARIBZADEH S, et al.. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate [J]. Chem. Commun., 2017, 53(4):747-750.

[14] HAN G S, LEE S, DUFF M L, et al.. Highly bendable flexible perovskite solar cells on a nanoscale surface cxide layer of titanium metal plates [J]. ACS Appl. Mater. Interfaces, 2018, 10(5):4697-4704.

[15] QIU L, HE S, YANG J, et al.. Fiber-shaped perovskite solar cells with high power conversion efficiency [J]. Small, 2016, 12(18):2419-2424.

[16] DOU B, MILLER E M, CHRISTIANS J A, et al.. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO [J]. J. Phys. Chem. Lett., 2017, 8(19):4960-4966.

[17] ZARDETTO V, BROWN T M, REALE A, et al.. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties [J]. J. Polym. Sci. Part B: Polym. Phys., 2011, 49(9):638-648.

[18] ROLDN-CARMONA C, MALINKIEWICZ O, SORIANO A, et al.. Flexible high efficiency perovskite solar cells [J]. Energy Environ. Sci., 2014, 7(3):994-997.

[19] LI Y, MENG L, YANG Y M, et al.. High-efficiency robust perovskite solar cells on ultrathin flexible substrates [J]. Nat. Commun., 2016, 7:10214.

[20] SEARS K K, FIEVEZ M, GAO M, et al.. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes [J]. Solar RRL, 2017, 1(8):1700059.

[21] LEE E, AHN J, KWON H C, et al.. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection [J]. Adv. Energy Mater., 2018, 8(9):1702182.

[22] JEON I, CUI K, CHIBA T, et al.. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells [J]. J. Am. Chem. Soc., 2015, 137(25):7982-7985.

[23] AITOLA K, SVEINBJRNSSON K, BAENA J P C, et al.. Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells [J]. Energy Environ. Sci., 2015, 9(2):461-466.

[24] JEON I, YOON J, AHN N, et al.. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells [J]. J. Phys. Chem. Lett., 2017, 8(21):5395-5401.

[25] LUO Q, MA H, HOU Q, et al.. All-carbon-electrode-based endurable flexible perovskite solar cells [J]. Adv. Funct. Mater., 2018, 28(11):1706777.

[26] KIM B J, KIM D H, LEE Y Y, et al.. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2015, 8(3):916-921.

[27] POORKAZEM K, LIU D, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell [J]. J. Mater. Chem. A, 2015, 3(17):9241-9248.

[28] CHEN Y, CHEN T, DAI L. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells [J]. Adv. Mater., 2015, 27(6):1053-1059.

[29] KALTENBRUNNER M, ADAM G, GOWACKI E D, et al.. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air [J]. Nat. Mater., 2015, 14(10):1032-1039.

[30] HU X, HUANG Z, ZHOU X, et al.. Wearable large-scale perovskite solar-power source via nanocellular scaffold [J]. Adv. Mater., 2017, 29(42):1703236.

[31] KUMAR M H, YANTARA N, DHARQANI S, et al.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013, 49(94):11089-11091.

[32] LIANG L, HUANG Z, CAI L, et al.. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells [J]. ACS Appl. Mater. Interfaces, 2014, 6(23):20585-20589.

[33] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques [J]. Nat. Photon., 2014, 8(2):133-138.

[34] YANG D, YANG R, REN X, et al.. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater., 2016, 28(26):5206-5213.

[35] WANG J T W, BALL J M, BAREA E M, et al.. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells [J]. Nano Lett., 2013, 14(2):724-730.

[36] LEE J W, LEE T Y, YOO P J, et al.. Rutile TiO2-based perovskite solar cells [J]. J. Mater. Chem. A, 2014, 2(24):9251-9259.

[37] TAN Z K, MOGHADDAM R S, LAI M L, et al.. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9):687-692.

[38] QIU W, PAETZOLD U W, GEHIHAAR R, et al.. An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates [J]. J. Mater. Chem. A, 2015, 3(45):22824-22829.

[39] YANG D, YANG R, ZHANG J, et al.. High efficiency flexible perovskite solar cells using superior low temperature TiO2 [J]. Energy Environ. Sci., 2015, 8(11):3208-3214.

[40] KIM B J, DONG H K, LEE Y Y, et al.. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2014, 8(3):916-921.

[41] BAI Y, FANG Y, DENG Y, et al.. Low temperature solution-processed Sb∶SnO2 nanocrystals for efficient planar perovskite solar cells [J]. Chemsuschem, 2016, 9(18):2686-2691.

[42] WANG K, SHI Y, GAO L, et al.. W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle [J]. Nano Energy, 2017, 31:424-431.

[43] DOCAMPO P, BALL J M, DANWICH M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nat. Commun., 2013, 4(7):2761.

[44] MALINKIEWICZ O, YELLA A, YONG H L, et al.. Perovskite solar cells employing organic charge-transport layers [J]. Nat. Photon., 2014, 8(2):128-132.

[45] YOU J, HONG Z, YANG Y, et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2):1674-1680.

[46] PARK J I, JIN H H, PARK S H, et al.. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3, perovskite solar cells [J]. J. Power Sources, 2017, 341:340-347.

[47] QIN P L, HE Q, CHEN C, et al.. High-performance rigid and flexible perovskite solar cells with low-temperature solution-processable binary metal oxide hole-transporting materials [J]. Solar RRL, 2017, 1(8):1700058.

蒋树刚, 魏岳, 刘海旭, 路万兵, 于威. 柔性有机/无机杂化钙钛矿太阳电池研究进展[J]. 发光学报, 2018, 39(12): 1687. JIANG Shu-gang, WEI Yue, LIU Hai-xu, LU Wan-bing, YU Wei. Research Progress of Flexible Organic/Inorganic Hybrid Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018, 39(12): 1687.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!