中国光学, 2020, 13 (1): 148, 网络出版: 2020-03-09   

星载海洋激光雷达最佳工作波长分析

Analysis of the optimal operating wavelength of spaceborne oceanic lidar
作者单位
1 浙江大学 光电科学与工程学院, 浙江 杭州 310027
2 中国科学院上海光学精密机械研究所, 上海 201800
3 浙江大学 海洋学院, 浙江 舟山 316021
引用该论文

刘群, 刘崇, 朱小磊, 周雨迪, 乐成峰, 白剑, 贺岩, 毕德仓, 刘东. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学, 2020, 13(1): 148.

LIU Qun, LIU Chong, ZHU Xiao-lei, ZHOU Yu-di, LE Cheng-feng, BAI Jian, HE Yan, BI De-cang, LIU Dong. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148.

参考文献

[1] BEHRENFELD M J, O′MALLEY R T, SIEGEL D A, et al.. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752-755.

[2] MCCLAIN C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 2009, 1: 19-42.

[3] HOSTETLER C A, BEHRENFELD M J, HU Y X, et al.. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 2017, 10: 121-147.

[4] BEHRENFELD M J, HU Y X, HOSTETLER C A, et al.. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360.

[5] BEHRENFELD M J, HU Y X, O′MALLEY R T, et al.. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience, 2017, 10(2): 118-122.

[6] LIU Q, LIU D, BAI J, et al.. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278-30291.

[7] 海洋国家实验室. 海洋国家实验室组织召开“观澜号”海洋科学卫星总体设计及其遥感应用关键技术研发项目论证会[EB/OL]. (2017-11-17). http: //www.qnlm.ac/page?a=5&b=3&c=63&p=detail.

    The Pilot National Laboratory for Marine Science and Technology. The Pilot National Laboratory for marine science and technology held the demonstrating meeting on the project of design of "GuanLan" marine science satellite and key technologies for remote sensing applications[EB/OL]. (2017-11-17). http: //www.qnlm.ac/page?a=5&b=3&c=63&p=detail. (in Chinese)

[8] SCHULIEN J A, BEHRENFELD M J, HAIR J W, et al.. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 2017, 25(12): 13577-13587.

[9] LEE J H, CHURNSIDE J H, MARCHBANKS R D, et al.. Oceanographic lidar profiles compared with estimates from in situ optical measurements[J]. Applied Optics, 2013, 52(4): 786-794.

[10] 周雨迪, 刘东, 徐沛拓, 等. 偏振激光雷达探测大气-水体光学参数廓线[J]. 遥感学报, 2019, 23(1): 108-115.

    ZHOU Y D, LIU D, XU P T, et al.. Detecting atmospheric-water optical property profiles with a polarized lidar[J]. Journal of Remote Sensing, 2019, 23(1): 108-115. (in Chinese)

[11] 刘秉义, 李瑞琦, 杨倩, 等. 蓝绿光星载海洋激光雷达全球探测深度估算[J]. 红外与激光工程, 2019, 48(1): 117-122.

    LIU B Y, LI R Q, YANG Q, et al.. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1): 117-122. (in Chinese)

[12] CHURNSIDE J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2014, 53(5): 051405.

[13] LIU ZH Y, VOELGER P, SUGIMOTO N. Simulations of the observation of clouds and aerosols with the experimental lidar in space equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137.

[14] GORDON H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996-3001.

[15] LEE Z P, DARECKI M, CARDER K L, et al.. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02017.

[16] CULLEN J J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?[J]. Annual Review of Marine Science, 2015, 7: 207-239.

[17] MOREL A, BERTHON J F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications[J]. Limnology and Oceanography, 1989, 34(8): 1545-1562.

[18] LEE Z, WEIDEMANN A, KINDLE J, et al.. Euphotic zone depth: its derivation and implication to ocean-color remote sensing[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03009.

[19] MA J, LU T T, ZHU X L, et al.. Highly efficient H-β Fraunhofer line optical parametric oscillator pumped by a single-frequency 355 nm laser[J]. Chinese Optics Letters, 2018, 16(8): 081901.

[20] CHURNSIDE J H, WILSON J J, OLIVER C W. Evaluation of the capability of the experimental oceanographic fisheries lidar (FLOE) for tuna detection in the eastern tropical pacific[R]. Boulder: Environmental Technology Laboratory, 1998.

[21] MOBLEY C D. Light and Water: Radiative Transfer in Natural Waters[M]. San Diego: Academic Press, 1994.

[22] GABRIEL C, KHALIGHI M A, BOURENNANE S, et al.. Monte-carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

刘群, 刘崇, 朱小磊, 周雨迪, 乐成峰, 白剑, 贺岩, 毕德仓, 刘东. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学, 2020, 13(1): 148. LIU Qun, LIU Chong, ZHU Xiao-lei, ZHOU Yu-di, LE Cheng-feng, BAI Jian, HE Yan, BI De-cang, LIU Dong. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!