中国激光, 2020, 47 (3): 0304001, 网络出版: 2020-03-12   

基于原子自由进动的光缩效应实验研究 下载: 983次

Experimental Demonstration of Light Narrowing Effect Based on Free Atomic Spin Precession
作者单位
1 浙江大学生物医学工程与仪器科学学院, 浙江 杭州 310058
2 浙江工业大学应用物理系, 浙江 杭州 310023
引用该论文

郑文强, 毕欣, 章国亿, 苏圣然, 李劲松, 林强. 基于原子自由进动的光缩效应实验研究[J]. 中国激光, 2020, 47(3): 0304001.

Zheng Wenqiang, Bi Xin, Zhang Guoyi, Su Shengran, Li Jingsong, Lin Qiang. Experimental Demonstration of Light Narrowing Effect Based on Free Atomic Spin Precession[J]. Chinese Journal of Lasers, 2020, 47(3): 0304001.

参考文献

[1] Gómez C, Hornero R, Abásolo D, et al. Analysis of the magnetoencephalogram background activity in Alzheimer's disease patients with auto-mutual information[J]. Computer Methods and Programs in Biomedicine, 2007, 87(3): 239-247.

[2] Sternickel K, Braginski A I. Biomagnetism using SQUIDs: status and perspectives[J]. Superconductor Science and Technology, 2006, 19(3): S160-S171.

[3] Groeger S, Bison G, Knowles P E, et al. Laser-pumped cesium magnetometers for high-resolution medical and fundamental research[J]. Sensors and Actuators A: Physical, 2006, 129(1/2): 1-5.

[4] 黄圣洁, 张桂迎, 胡正珲, 等. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量[J]. 中国激光, 2018, 45(12): 1204006.

    Huang S J, Zhang G Y, Hu Z H, et al. Human magnetoencephalography measurement by highly sensitive serf atomic magnetometer[J]. Chinese Journal of Lasers, 2018, 45(12): 1204006.

[5] Xu S J, Crawford C W, Rochester S, et al. Submillimeter-resolution magnetic resonance imaging at the Earth's magnetic field with an atomic magnetometer[J]. Physical Review A, 2008, 78(1): 013404.

[6] Sarma B S P, Verma B K, Satyanarayana S V. Magnetic mapping of Majhgawan diamond pipe of central India[J]. Geophysics, 1999, 64(6): 1735-1739.

[7] Mende SB, Harris SE, Frey HU, et al. The THEMIS array of ground-based observatories for the study of auroral substorms[M] //Burch J L, Angelopoulos V. The THEMIS mission. New York, NY: Springer, 2009: 357- 387.

[8] Russell C T, Chi P J, Dearborn D J, et al. THEMIS ground-based magnetometers[J]. Space Science Reviews, 2008, 141: 389-412.

[9] Turkakin H, Marchand R, Kale Z C. Mode trapping in the plasmasphere[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A11): A11210.

[10] Carreon H. Fretting damage assessment in Ti-6Al-4V by magnetic sensing[J]. Wear, 2008, 265(1/2): 255-260.

[11] Životsky O, Postava K, Kraus L, et al. Surface and bulk magnetic properties of as-quenched FeNbB ribbons[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(8): 1535-1540.

[12] Bonavolonta C, Valentino M, Peluso G, et al. Non destructive evaluation of advanced composite materials for aerospace application using HTS SQUIDs[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 772-775.

[13] Kuroda M, Yamanaka S, Isobe Y. Detection of plastic deformation in low carbon steel by SQUID magnetometer using statistical techniques[J]. NDT & e International, 2005, 38(1): 53-57.

[14] Tralshawala N, Claycomb J R. Miller J H Jr. Practical SQUID instrument for nondestructive testing[J]. Applied Physics Letters, 1997, 71(11): 1573-1575.

[15] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

[16] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

[17] Knowles P, Bison G, Castagna N, et al. Laser-driven Cs magnetometer arrays for magnetic field measurement and control[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 611(2/3): 306-309.

[18] Ledbetter M P, Theis T, Blanchard J W, et al. Near-zero-field nuclear magnetic resonance[J]. Physical Review Letters, 2011, 107(10): 107601.

[19] Chen B T, Jiang M, Ji Y L, et al. Spin-exchange relaxation free atomic magnetometer for zero-field nuclear magnetic resonance detection[J]. Chinese Journal of Lasers, 2017, 44(10): 1004001.

[20] Savukov I M, Zotev V S, Volegov P L, et al. MRI with an atomic magnetometer suitable for practical imaging applications[J]. Journal of Magnetic Resonance, 2009, 199(2): 188-191.

[21] Appelt S. Baranga A B A, Erickson C J, et al. Theory of spin-exchange optical pumping of 3He and 129Xe[J]. Physical Review A, 1998, 58(2): 1412-1439.

[22] Appelt S. Ben-Amar Baranga A, Young A R, et al. Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells[J]. Physical Review A, 1999, 59(3): 2078-2084.

[23] Smullin S J, Savukov I M, Vasilakis G, et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 2009, 80(3): 033420.

[24] Lee S K, Sauer K L, Seltzer S J, et al. Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance[J]. Applied Physics Letters, 2006, 89(21): 214106.

[25] Savukov I M, Seltzer S J, Romalis M V, et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 2005, 95(6): 063004.

[26] Jau Y Y, Post A B, Kuzma N N, et al. Intense, narrow atomic-clock resonances[J]. Physical Review Letters, 2004, 92(11): 110801.

[27] Xia H. Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104.

[28] Scholtes T, Schultze V, IJsselsteijn R, et al. Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell[J]. Physical Review A, 2011, 84(4): 043416.

[29] Sheng D, Li S, Dural N, et al. Subfemtotesla scalar atomic magnetometry using multipass cells[J]. Physical Review Letters, 2013, 110(16): 160802.

[30] Grujic Z D, Koss P A, Bison G, et al. A sensitive and accurate atomic magnetometer based on free spin precession[J]. The European Physical Journal D, 2015, 69(5): 135.

[31] Purcell E M, Field G B. Influence of collisions upon population of hyperfine states in hydrogen[J]. The Astrophysical Journal, 1956, 124: 542.

[32] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B: Lasers and Optics, 2003, 76(3): 325-328.

[33] Kim K, Begus S, Xia H, et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. NeuroImage, 2014, 89: 143-151.

郑文强, 毕欣, 章国亿, 苏圣然, 李劲松, 林强. 基于原子自由进动的光缩效应实验研究[J]. 中国激光, 2020, 47(3): 0304001. Zheng Wenqiang, Bi Xin, Zhang Guoyi, Su Shengran, Li Jingsong, Lin Qiang. Experimental Demonstration of Light Narrowing Effect Based on Free Atomic Spin Precession[J]. Chinese Journal of Lasers, 2020, 47(3): 0304001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!