中国激光, 2017, 44 (8): 0801005, 网络出版: 2017-09-13  

基于锥面镜和筒形反射镜复合结构的径向偏振光会聚及级联纵向电场的形成

Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 日本电气通信大学激光研究所, 东京 182-8585
引用该论文

谭诗文, 李建郎, Ueda Ken-Ichi. 基于锥面镜和筒形反射镜复合结构的径向偏振光会聚及级联纵向电场的形成[J]. 中国激光, 2017, 44(8): 0801005.

Tan Shiwen, Li Jianlang, Ueda Ken-Ichi. Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror[J]. Chinese Journal of Lasers, 2017, 44(8): 0801005.

参考文献

[1] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[C]. Proceedings of IEEE, 1972: 1107-1109.

[2] Hall D G. Vector-beam solutions of Maxwell′s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.

[3] Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[4] Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Optics Communications, 2000, 179(1/2/3/4/5/6): 1-7.

[5] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

[6] 阎 杰, 鲁拥华, 王 沛, 等. 径向偏振光聚焦光斑研究[J]. 光学学报, 2010, 30(12): 3597-3603.

    Yan Jie, Lu Yonghua, Wang Pei, et al. Study of focal spot of radially polarized beam[J]. Acta Optica Sinica, 2010, 30(12): 3597-3603.

[7] 郑 晓, 杨艳芳, 何 英, 等. 双环贝塞尔-高斯径向偏振光束经介质分界面的强聚焦[J]. 光学学报, 2016, 36(4): 0426001.

    Zheng Xiao, Yang Yanfang, He Ying, et al. Tight focusing of double-ring-shaped Bessel-Gaussian radially polarized beam through a dielectric interface[J]. Acta Optica Sinica, 2016, 36(4): 0426001.

[8] 蔡勋明, 赵晶云, 范梦慧, 等. 椭圆环光阑对径向偏振光聚焦研究的影响[J]. 光学学报, 2016, 36(3): 0326002.

    Cai Xunming, Zhao Jingyun, Fan Menghui, et al. Effect of elliptic annular aperture on focusing of radially polarized beam[J]. Acta Optica Sinica, 2016, 36(3): 0326002.

[9] Wang H, Yuan G, Tan W, et al. Spot size and depth of focus in optical data storage system[J]. Optical Engineering, 2007, 46(6): 065201.

[10] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

[11] Peng F, Yao B, Yan S, et al. Trapping of low-refractive-index particles with azimuthally polarized beam[J]. Journal of the Optical Society of America B, 2009, 26(12): 2242-2247.

[12] Liu Z, Jones P H. Fractal conical lens optical tweezers[J]. IEEE Photonics Journal, 2017, 9(1): 1-11.

[13] Allegre O J, Perrie W, Edwardson S P, et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. Journal of Optics, 2012, 14(8): 085601.

[14] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D: Applied Physics, 1999, 32(13): 1455-1461.

[15] Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam[J]. Scientific Reports, 2014: 3627.

[16] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

[17] Fontana J R, Pantell R H. A high-energy, laser accelerator for electrons using the inverse cherenkov effect[J]. Journal of Applied Physics, 1983, 54(8): 4285-4288.

[18] Salamin Y I. Low-diffraction direct particle acceleration by a radially polarized laser beam[J]. Physics Letters A, 2010, 374(48): 4950-4953.

[19] Kimura W D, Kim G H, Romea R D, et al. Laser acceleration of relativistic electrons using the inverse cherenkov effect[J]. Physical Review Letters, 1995, 74(4): 546-549.

[20] Kimura W D, Steinhauer L C, Kim G H, et al. Update on the aft inverse cerenkov laser acceleration experiment[C]. Proceedings of the 1993 Particle Accelerator Conference, 1993: 2564-2566.

[21] Goodman J W, Gustafson S C. Introduction to fourier optics[M]. 2nd ed. New York: McGraw-Hill, Inc., 1996: 79-110.

[22] Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. 2nd ed. Oxford City: Cambridge University Press, 1964: 375-382.

[23] McLeod J H. The axicon: A new type of optical element[J]. Journal of the Optical Society of America, 1954, 44(8): 592-597.

[24] Richards B, Wolf E. Electromagnetic diffraction in optical systems.II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 358-379.

[25] Wolf E. Electromagnetic diffraction in optical systems.I. An integral representation of the image field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 349-357.

[26] Prabakaran K, Chandrasekaran R, Mahadevan G, et al. Tight focusing of generalized cylindrical vector beam with high NA lens axicon[J]. Optics Communications, 2013, 295: 230-234.

[27] Ushakova E E, Kurilkina S N. Formation of Bessel light pulses by means of a conical mirror[J]. Journal of Applied Spectroscopy, 2011, 77(6): 827-831.

[28] Kuntz K B, Braverman B, Youn S H, et al. Spatial and temporal characterization of a Bessel beam produced using a conical mirror[J]. Physical Review A, 2009, 79(4): 043802.

[29] Zhu M N, Cao Q, Gao H. Creation of a 50000 lambda long needle-like field with 0.36 lambda width[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2014, 31(3): 500-504.

[30] Borovikov V A. Uniform stationary phase method[J]. Theoretical & Mathematical Physics, 1994, 2(1): 21-25.

[31] Conde O M, Perez J, Catedra M F. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures[J]. IEEE Transactions on Antennas and Propagation Society, 2001, 49(5): 724-731.

[32] 赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析[J]. 物理学报, 2012, 61(7): 074207.

    Zhao Tingyu, Liu Qinxiao, Yu Feihong. The point spread function analysis in a wavefront coding system based on stationary phase method[J]. Acta Physica Sinica, 2012, 61(7): 074207.

[33] 潘 超. 运用稳相法和模糊函数设计离焦不敏感光学系统[J]. 湖北理工学院学报, 2010, 26(4): 39-42.

    Pan Chao. Study on applied research in optics of stationary phase method and ambiguity function[J]. Journal of Hubei Polytechnic University, 2010, 26(4): 39-42.

[34] 周炳坤, 高以志, 陈倜嵘, 等. 激光原理[M]. 6版. 北京: 国防工业出版社, 2009: 74.

    Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. Principles of laser [M]. 6th ed. Beijing: National Defense of Industry Press, 2009: 74.

[35] Dyakonov M I, Varshalovich D A. Optical modulation of electron beam by inverse Cerenkov effect[J]. Physics Letters A, 1971, 35(4): 277-278.

[36] Edighoffer J A, Kimura W D, Pantell R H, et al. Free-electron interactions with light using the inverse cerenkov effect[J]. IEEE Journal of Quantum Electronics, 1981, 17(8): 1507-1514.

谭诗文, 李建郎, . 基于锥面镜和筒形反射镜复合结构的径向偏振光会聚及级联纵向电场的形成[J]. 中国激光, 2017, 44(8): 0801005. Tan Shiwen, Li Jianlang, Ueda Ken-Ichi. Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror[J]. Chinese Journal of Lasers, 2017, 44(8): 0801005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!