激光与光电子学进展, 2020, 57 (1): 013002, 网络出版: 2020-01-03   

基于近红外光谱检测不同产地石榴的糖度 下载: 1222次

Detection of Sugar Content of Pomegranates from Different Producing Areas Based on Near-Infrared Spectroscopy
作者单位
华东交通大学机电与车辆工程学院水果智能光电检测技术与装备国家地方联合工程研究中心, 江西 南昌 330013
引用该论文

刘燕德, 张雨, 徐海, 姜小刚, 王军政. 基于近红外光谱检测不同产地石榴的糖度[J]. 激光与光电子学进展, 2020, 57(1): 013002.

Yande Liu, Yu Zhang, Hai Xu, Xiaogang Jiang, Junzheng Wang. Detection of Sugar Content of Pomegranates from Different Producing Areas Based on Near-Infrared Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(1): 013002.

参考文献

[1] 布日古德, 娜布其. 简述石榴的药用及保健功效[J]. 中国民族医药杂志, 2014, 20(5): 66-68.

    Bu R G D, Na B Q. Briefly describe the medicinal and health benefits of pomegranate[J]. Journal of Medicine & Pharmacy of Chinese Minorities, 2014, 20(5): 66-68.

[2] Wang A C, Xie L J. Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit[J]. Journal of Food Engineering, 2014, 143: 17-24.

[3] Sinelli N, Cerretani L, Egidio V D, et al. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity[J]. Food Research International, 2010, 43(1): 369-375.

[4] Lee C, Polari J J, Kramer K E, et al. Near-infrared (NIR) spectrometry as a fast and reliable tool for fat and moisture analyses in olives[J]. ACS Omega, 2018, 3(11): 16081-16088.

[5] Khurnpoon L, Sirisomboon P. Rapid evaluation of the texture properties of melon (Cucumis melo L. Var. reticulata cv. Green net) using near infrared spectroscopy[J]. Journal of Texture Studies, 2018, 49(4): 387-394.

[6] Pasquini C. Near infrared spectroscopy: a mature analytical technique with new perspectives—a review[J]. Analytica Chimica Acta, 2018, 1026: 8-36.

[7] 王琼. 近红外光谱对石榴品种的判别及品质的无损检测[D]. 咸阳: 西北农林科技大学, 2017.

    WangQ. Variety discrimination and non-destructive detection of quality of pomegranate by near-infrared spectroscopy[D]. Xianyang: Northwest A & F University, 2017.

[8] 吴习宇, 祝诗平, 王谦, 等. DPLS和SVM的掺假花椒粉近红外光谱定性鉴别[J]. 光谱学与光谱分析, 2018, 38(8): 2369-2373.

    Wu X Y, Zhu S P, Wang Q, et al. Qualitative identification of adulterated huajiao powder using near infrared spectroscopy based on DPLS and SVM[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2369-2373.

[9] 刘燕德, 吴明明, 李轶凡, 等. 苹果可溶性固形物和糖酸比可见/近红外漫反射与漫透射在线检测对比研究[J]. 光谱学与光谱分析, 2017, 37(8): 2424-2429.

    Liu Y D, Wu M M, Li Y F, et al. Comparison of reflection and diffuse transmission for detecting solid soluble contents and ratio of sugar and acid in apples by on-line vis/NIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2424-2429.

[10] 刘燕德, 吴明明, 孙旭东, 等. 黄桃表面缺陷和可溶性固形物光谱同时在线检测[J]. 农业工程学报, 2016, 32(6): 289-295.

    Liu Y D, Wu M M, Sun X D, et al. Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 289-295.

[11] 褚小立. 近红外光谱分析技术实用手册[M]. 北京: 机械工业出版社, 2016: 114- 133.

    Chu XL. Near-infrared spectroscopy technology practical manual[M]. Beijing: China Machine Press, 2016: 114- 133.

[12] Yang I C, Tsai C Y, Hsieh K W, et al. Integration of SIMCA and near-infrared spectroscopy for rapid and precise identification of herbal medicines[J]. Journal of Food and Drug Analysis, 2013, 21(3): 268-278.

[13] Nejadgholi I, Bolic M. A comparative study of PCA, SIMCA and Cole model for classification of bioimpedance spectroscopy measurements[J]. Computers in Biology and Medicine, 2015, 63: 42-51.

[14] 王丽杰, 杨羽翼. 利用主成分权重重置实现牛奶成分浓度快速检测中近红外光谱的净化去噪[J]. 光学学报, 2017, 37(10): 1030003.

    Wang L J, Yang Y Y. Purification and noise elimination of near infrared spectrum in rapid detection of milk components concentration by using principal component weight resetting[J]. Acta Optica Sinica, 2017, 37(10): 1030003.

[15] 褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011: 55- 57.

    Chu XL. Molecular spectroscopy analytical technology combined with chemometrics and its applications[M]. Beijing: Chemical Industry Press, 2011: 55- 57.

[16] Hulland J. Use of partial least squares (PLS) in strategic management research: a review of four recent studies[J]. Strategic Management Journal, 1999, 20(2): 195-204.

[17] de Fusco D O, Costa R C, et al. PLS, iPLS, GA-PLS models for soluble solids content, pH and acidity determination in intact Dovyalis fruit using near-infrared spectroscopy[J]. Journal of the Science of Food and Agriculture, 2018, 98(15): 5750-5755.

[18] 郝勇, 孙旭东, 高荣杰, 等. 基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别[J]. 农业工程学报, 2010, 26(12): 373-377.

    Hao Y, Sun X D, Gao R J, et al. Application of visible and near infrared spectroscopy to identification of navel orange varieties using SIMCA and PLS-DA methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 373-377.

[19] Ignat T, Schmilovitch Z, Fefoldi J, et al. Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry[J]. Postharvest Biology and Technology, 2012, 74: 91-99.

[20] 王亚军, 袁心强, 石斌, 等. 基于激光诱导击穿光谱结合偏最小二乘判别分的软玉产地识别研究[J]. 中国激光, 2016, 43(12): 1211001.

    Wang Y J, Yuan X Q, Shi B, et al. Origins of nephrite by laser-induced breakdown spectroscopy using partial least squares discriminant analysis[J]. Chinese Journal of Lasers, 2016, 43(12): 1211001.

[21] Yan W L, Ren S Y, Yue X X, et al. Rapid detection of cAMP content in red jujube using near-infrared spectroscopy[J]. Optoelectronics Letters, 2018, 14(5): 380-383.

[22] Zhu G Z, Tian C N. Determining sugar content and firmness of ‘Fuji’ apples by using portable near-infrared spectrometer and diffuse transmittance spectroscopy[J]. Journal of Food Process Engineering, 2018, 41(6): e12810.

[23] 傅博, 胡永翔, 刘蓉, 等. 基于中等浓度样品参考测量的近红外光谱检测方法[J]. 光学学报, 2016, 36(2): 0230003.

    Fu B, Hu Y X, Liu R, et al. Near-infrared measurement with medium concentration sample as reference[J]. Acta Optica Sinica, 2016, 36(2): 0230003.

[24] Rizvi T S, Mabood F, Ali L, et al. Application of NIR spectroscopy coupled with PLS regression for quantification of total polyphenol contents from the fruit and aerial parts of Citrullus colocynthis[J]. Phytochemical Analysis, 2018, 29(1): 16-22.

刘燕德, 张雨, 徐海, 姜小刚, 王军政. 基于近红外光谱检测不同产地石榴的糖度[J]. 激光与光电子学进展, 2020, 57(1): 013002. Yande Liu, Yu Zhang, Hai Xu, Xiaogang Jiang, Junzheng Wang. Detection of Sugar Content of Pomegranates from Different Producing Areas Based on Near-Infrared Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(1): 013002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!