光学学报, 2017, 37 (9): 0914002, 网络出版: 2018-09-07   

基于DSP技术的外腔半导体激光器自动稳频系统 下载: 1047次

Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
引用该论文

项静峰, 王利国, 李琳, 吕德胜, 刘亮. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 0914002.

Jingfeng Xiang, Liguo Wang, Lin Li, Desheng Lü, Liang Liu. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.

参考文献

[1] Talvitie H, Pietilainen A, Ludvigsen H, et al. Passive frequency and intensity stabilization of extended-cavity diode lasers[J]. Review of Scientific Instruments, 1997, 68(1): 1-7.

    Talvitie H, Pietilainen A, Ludvigsen H, et al. Passive frequency and intensity stabilization of extended-cavity diode lasers[J]. Review of Scientific Instruments, 1997, 68(1): 1-7.

[2] Micalizio S, Godone A, Levi F, et al. Pulsed optically pumped 87Rb vapor cell frequency standard: a multilevel approach [J]. Physical Review A, 2009, 79(1): 013403.

    Micalizio S, Godone A, Levi F, et al. Pulsed optically pumped 87Rb vapor cell frequency standard: a multilevel approach [J]. Physical Review A, 2009, 79(1): 013403.

[3] Affolderbach C, Droz F, Mileti G. Experimental demonstration of a compact and high-performance laser-pumped rubidium gas cell atomic frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 429-435.

    Affolderbach C, Droz F, Mileti G. Experimental demonstration of a compact and high-performance laser-pumped rubidium gas cell atomic frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 429-435.

[4] Zheng B C, Cheng H D, Meng Y L, et al. Development of an integrating sphere cold atom clock[J]. Chinese Physics Letters, 2013, 30(12): 123701.

    Zheng B C, Cheng H D, Meng Y L, et al. Development of an integrating sphere cold atom clock[J]. Chinese Physics Letters, 2013, 30(12): 123701.

[5] 田晓, 徐琴芳, 尹默娟, 等. 国家授时中心锶原子光钟的实验研制进展[J]. 光学学报, 2015, 35(s1): s102001.

    田晓, 徐琴芳, 尹默娟, 等. 国家授时中心锶原子光钟的实验研制进展[J]. 光学学报, 2015, 35(s1): s102001.

    Tian Xiao, Xu Qinfang, Yin Mojuan, et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 2015, 35(s1): s102001.

    Tian Xiao, Xu Qinfang, Yin Mojuan, et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 2015, 35(s1): s102001.

[6] 刘鹏, 成华东, 孟艳玲, 等. 积分球冷原子钟相位调制Ramsey条纹研究[J]. 中国激光, 2016, 43(11): 1112001.

    刘鹏, 成华东, 孟艳玲, 等. 积分球冷原子钟相位调制Ramsey条纹研究[J]. 中国激光, 2016, 43(11): 1112001.

    Liu Peng, Cheng Huadong, Meng Yanling, et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese J Lasers, 2016, 43(11): 1112001.

    Liu Peng, Cheng Huadong, Meng Yanling, et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese J Lasers, 2016, 43(11): 1112001.

[7] Allard F, Maksimovic I, Abgrall M, et al. Automatic system to control the operation of an extended cavity diode laser[J]. Review of Scientific Instruments, 2004, 75(1): 54-58.

    Allard F, Maksimovic I, Abgrall M, et al. Automatic system to control the operation of an extended cavity diode laser[J]. Review of Scientific Instruments, 2004, 75(1): 54-58.

[8] Lévèque T, Faure B, Esnault F X, et al. PHARAO laser source flight model: design and performances[J]. Review of Scientific Instruments, 2015, 86(3): 033104.

    Lévèque T, Faure B, Esnault F X, et al. PHARAO laser source flight model: design and performances[J]. Review of Scientific Instruments, 2015, 86(3): 033104.

[9] Dong L, Yin W B, Ma W G, et al. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Measurement Science & Technology, 2007, 18(5): 1447-1452.

    Dong L, Yin W B, Ma W G, et al. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Measurement Science & Technology, 2007, 18(5): 1447-1452.

[10] 张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 2014, 41(6): 0602001.

    Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 2014, 41(6): 0602001.

[11] 鱼志健, 薛文祥, 赵文宇, 等. 用于POP铷原子钟的DFB激光器自动稳频技术研究[J]. 时间频率学报, 2015, 38(3): 129-138.

    鱼志健, 薛文祥, 赵文宇, 等. 用于POP铷原子钟的DFB激光器自动稳频技术研究[J]. 时间频率学报, 2015, 38(3): 129-138.

    Yu Zhijian, Xue Wenxiang, Zhao Wenyu, et al. Automatic frequency stabilization system of DFB diode laser for POP Rb atomic clock[J]. Journal of Time and Frequency, 2015, 38(3): 129-138.

    Yu Zhijian, Xue Wenxiang, Zhao Wenyu, et al. Automatic frequency stabilization system of DFB diode laser for POP Rb atomic clock[J]. Journal of Time and Frequency, 2015, 38(3): 129-138.

[12] 魏芳, 陈迪俊, 董作人, 等. 基于DSP的全数字稳频DFB半导体激光器系统[J]. 光电子·激光, 2010, 21(s1): 40-42.

    魏芳, 陈迪俊, 董作人, 等. 基于DSP的全数字稳频DFB半导体激光器系统[J]. 光电子·激光, 2010, 21(s1): 40-42.

    Wei Fang, Chen Dijun, Dong Zuoren, et al. Full digital DFB diode laser system with frequency stabilization based on DSP[J]. Journal of Optelectronics·lasers, 2010, 21(s1): 40-42.

    Wei Fang, Chen Dijun, Dong Zuoren, et al. Full digital DFB diode laser system with frequency stabilization based on DSP[J]. Journal of Optelectronics·lasers, 2010, 21(s1): 40-42.

[13] 贺志刚, 邓伦华, 王贵师, 等. 基于数字反馈控制的Nd∶YAG激光器频率稳定技术[J]. 中国激光, 2012, 39(7): 0702009.

    贺志刚, 邓伦华, 王贵师, 等. 基于数字反馈控制的Nd∶YAG激光器频率稳定技术[J]. 中国激光, 2012, 39(7): 0702009.

    He Zhigang, Deng Lunhua, Wang Guishi, et al. Nd∶YAG laser frequency stabilization technology based on digital feedback control[J]. Chinese J Lasers, 2012, 39(7): 0702009.

    He Zhigang, Deng Lunhua, Wang Guishi, et al. Nd∶YAG laser frequency stabilization technology based on digital feedback control[J]. Chinese J Lasers, 2012, 39(7): 0702009.

[14] 孙延光, 董作人, 陈迪俊, 等. 基于数字反馈稳频的激光瓦斯遥测技术[J]. 中国激光, 2013, 40(4): 0408002.

    孙延光, 董作人, 陈迪俊, 等. 基于数字反馈稳频的激光瓦斯遥测技术[J]. 中国激光, 2013, 40(4): 0408002.

    Sun Yanguang, Dong Zuoren, Chen Dijun, et al. Laser methane remote sensing technology based on digital feedback frequency stabilization[J]. Chinese J Lasers, 2013, 40(4): 0408002.

    Sun Yanguang, Dong Zuoren, Chen Dijun, et al. Laser methane remote sensing technology based on digital feedback frequency stabilization[J]. Chinese J Lasers, 2013, 40(4): 0408002.

[15] 维格特. 数字信号处理基础[M]. 侯正信, 王国安, 译. 北京: 电子工业出版社, 2009: 80.

    维格特. 数字信号处理基础[M]. 侯正信, 王国安, 译. 北京: 电子工业出版社, 2009: 80.

    de Vegte JV. Fundamentals of digital signal processing[M]. Hou Zhengxin, Wang Guoan, Transl. Beijing: Publishing House of Electronics Industry, 2009: 80.

    de Vegte JV. Fundamentals of digital signal processing[M]. Hou Zhengxin, Wang Guoan, Transl. Beijing: Publishing House of Electronics Industry, 2009: 80.

项静峰, 王利国, 李琳, 吕德胜, 刘亮. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 0914002. Jingfeng Xiang, Liguo Wang, Lin Li, Desheng Lü, Liang Liu. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!