发光学报, 2017, 38 (2): 207, 网络出版: 2017-02-09  

基于PVP和PbSe 三维自组装超晶格复合体系的电双稳器件

Electrical Bistable Devices Based on Composites of Polyvinyl Pyrrolidone and Three Dimensional Self-assembled Lead Selenide Superlattices
作者单位
1 北京交通大学 发光与光信息教育部重点实验室, 北京 100044
2 苏州瑞晟太阳能有限公司, 江苏 苏州 215123
引用该论文

张振, 钱磊, 韩长峰, 滕枫. 基于PVP和PbSe 三维自组装超晶格复合体系的电双稳器件[J]. 发光学报, 2017, 38(2): 207.

ZHANG Zhen, QIAN Lei, HAN Chang-feng, TENG Feng. Electrical Bistable Devices Based on Composites of Polyvinyl Pyrrolidone and Three Dimensional Self-assembled Lead Selenide Superlattices[J]. Chinese Journal of Luminescence, 2017, 38(2): 207.

参考文献

[1] MA L P, LIU J, YANG Y. Organic electrical bistable devices and rewritable memory cells [J]. Appl. Phys. Lett., 2002, 80(16):2997-2999.

[2] OUYANG J Y, CHU C W, SZMANDA C R, et al.. Programmable polymer thin film and non-volatile memory device [J]. Nat. Mater., 2004, 3(12):918-922.

[3] TSENG R J, OUYANG J Y, CHU C W, et al.. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device [J]. Appl. Phys. Lett., 2006, 88(12):123506-1-3.

[4] PRAKASH A, OUYANG J M, LIN J L, et al.. Polymer memory device based on conjugated polymer and gold nanoparticles [J]. J. Appl. Phys., 2006, 100(5):054309-1-5.

[5] BOZANO L D, KEAN B W, DELINE V R, et al.. Mechanism for bistability in organic memory elements [J]. Appl. Phys. Lett., 2004, 84(4):607-609.

[6] TSENG R J, HUANG J X, OUYANG J Y, et al.. Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J]. Nano Lett., 2005, 5(6):1077-1080.

[7] SON D I, YOU C H, JUNG J H, et al.. Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites [J]. Appl. Phys. Lett., 2010, 97(1):013304.

[8] SON D I, PARK D H, CHOI W K, et al.. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer [J]. Nanotechnology, 2009, 20(19):195203.

[9] SLEIMAN A, MABROOK M F, NEJM R R, et al.. Organic bistable devices utilizing carbon nanotubes embedded in poly(methyl methacrylate) [J]. J. Appl. Phys., 2012, 112(2):024509.

[10] SON D I, KIM T W, SHIM J H, et al.. Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer [J]. Nano Lett., 2010, 10(7):2441-2447.

[11] LI F S, SON D I, HAM J H, et al.. Memory effect of nonvolatile bistable devices based on CdSe/ZnS nanoparticles sandwiched between C60 layers [J]. Appl. Phys. Lett., 2007, 91(16):162109.

[12] CHENG Y Y, HAN C F, CHEN L, et al.. Electrical bistability and conduction mechanisms of zinc oxide/polyvinylpyrrolidone nanocomposites bistable devices [J]. Sci. Adv. Mater., 2016, 8(4):783-787.

[13] TANG A W, TENG F, QIAN L, et al.. Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer [J]. Appl. Phys. Lett., 2009, 95(14):143115-1-3.

[14] TANG A W, QU S C, HOU Y B, et al.. Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites [J]. J. Appl. Phys., 2010, 108(9):094320-1-5.

[15] MA L P, PYO S, OUYANG J Y, et al.. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system [J]. Appl. Phys. Lett., 2003, 82(9):1419-1421.

[16] LI F S, SON D I, KIM B J, et al.. Nonvolatile electrical bistability and operating mechanism of memory devices based on CdSe/ZnS nanoparticle/polymer hybrid composites [J]. Appl. Phys. Lett., 2008, 93(2):021913-1-3.

[17] TANG A W, TENG F, HOU Y B, et al.. Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol [J]. Appl. Phys. Lett., 2010, 96(16):163112-1-3.

[18] LI F S, KIM T W, DONG W G, et al.. Formation and electrical bistability properties of ZnO nanoparticles embedded in polyimide nanocomposites sandwiched between two C60 layers [J]. Appl. Phys. Lett., 2008, 92(1):011906-1-3.

[19] JUNG J H, KIM J H, KIM T W, et al.. Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer [J]. Appl. Phys. Lett., 2006, 89(12):122110-1-3.

[20] LI F S, SON D I, SEO S M, et al.. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer [J]. Appl. Phys. Lett., 2007, 91(12):122111-1-3.

[21] QIAN L, YANG Y X, HAN C F, et al.. Efficient infrared photodetector based on three-dimensional self-assembled PbSe superlattices [J]. J. Mater. Chem. C, 2014, 2(33):6738-6742.

张振, 钱磊, 韩长峰, 滕枫. 基于PVP和PbSe 三维自组装超晶格复合体系的电双稳器件[J]. 发光学报, 2017, 38(2): 207. ZHANG Zhen, QIAN Lei, HAN Chang-feng, TENG Feng. Electrical Bistable Devices Based on Composites of Polyvinyl Pyrrolidone and Three Dimensional Self-assembled Lead Selenide Superlattices[J]. Chinese Journal of Luminescence, 2017, 38(2): 207.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!