红外, 2014, 35 (4): 7, 网络出版: 2014-04-28  

碲基硫系长波红外传输光纤的研究进展

Research Progress of Tellurium-based Chalcogenide Long-wave Infrared Transmitting Fibers
作者单位
1 江苏师范大学物理与电子工程学院, 江苏 徐州 221116
2 CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida32816
3 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
4 上海大学材料科学与工程学院, 上海 200072
5 宁波大学高等技术研究院红外材料与器件实验室, 浙江 宁波 315211
引用该论文

任和, 陶光明, 杨安平, 郭海涛, 杨光, 许彦涛, 王训四, 杨志勇. 碲基硫系长波红外传输光纤的研究进展[J]. 红外, 2014, 35(4): 7.

REN He, TAO Guang-ming, YANG An-ping, GUO Hai-tao, YANG Guang, XU Yan-tao, WANG Xun-si, YANG Zhi-yong. Research Progress of Tellurium-based Chalcogenide Long-wave Infrared Transmitting Fibers[J]. INFRARED, 2014, 35(4): 7.

参考文献

[1] Sanghera J S, Shaw L B, Aggarwal I D. Applications of Chalcogenide Glass Optical Fibers [J]. Comptes Rendus Chimie, 2002, 5(12): 873-883.

[2] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide Glass-fiber-based Mid-IR Sources and Application [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114-119.

[3] Lavi Y, Millo A, Katzir A. Thin Ordered Bundles of Infrared-transmitting Silver Halide Fibers [J]. Applied Physics Letters, 2005, 87(24): 241122.

[4] Shaw B, Gibson D, Nguyen V, et al. IR Imaging Bundles for HWIL Testing [C]. SPIE, 2011, 8015: 801503.

[5] Raichlin Y, Katzir A. Fiber-optic Evanescent Wave Spectroscopy in the Middle Infrared [J]. Applied Spectroscopy, 2008, 62(2): 55-72.

[6] Bureau B, Maurugeon S, Charpentier F, et al. Chalcogenide Glass Fibers for Infrared Sensing and Space Optics [J]. Fiber and Integrated optics, 2009, 28(1): 65-80.

[7] Zhu X, Peyghambarian N. High-power ZBLAN Glass Fiber Lasers: Review and Prospect [J]. Advances in Optoelectronics, 2010, 10: 501956.

[8] Bei J F, Monro T M, Hemming A, et al. Reduction of Scattering Loss in Fluoroindate Glass Fibers [J]. Optical Materials Express, 2013, 3(9): 1285-1301.

[9] 高建平, 卞蓓亚, 陈惠民, 等. 卤化银多晶光纤传输CO2 激光性能的研究 [J]. 无机材料学报, 2000, 15(1): 119-123.

[10] Harrington J A. A Review of IR Transmitting Hollow Waveguide [J]. Fiber and Integrated Optics, 2000, 19(3): 211-227.

[11] Harrington J A. Infrared Hollow Waveguides: An Update [C]. SPIE, 2008, 6852: 68520M.

[12] Shiryaev V S, Churbanov M F. Trends and Prospects for Development of Chalcogenide Fibers for Mid-infrared Transmission [J]. Journal of Non-Crystalline Solids, 2013, 377: 225-230.

[13] Kapany N S, Simms R J. Recent Developments of Infrared Fiber Optics [J]. Infrared Physics, 1965, 5(2): 69-75.

[14] Churbanov M F. High-purity Chalcogenide Glasses as Materials for Fiber Optics [J]. Journal of Non-Crystalline Solids, 1995, 184: 25-29.

[15] Snopatin G E, Shiryaev V S, Plotnichenko V G. High-purity Chalcogenide Glasses for Fiber Optics [J]. Inorganic Materials, 2009, 45(13): 1439-1460.

[16] Conseil C, Shiryaev V S, Cui S, et al. Preparation of High Purity Te-rich Ge-Te-Se Fibers for 5~15 m Infrared Range [J].Journal of Lightwave Technology, 2013, 31(11): 1703-1707.

[17] Zhang S, Zhang X, Barillot M, et al. Purification of Te75Ga10Ge15 Glass for Far Infrared Transmitting Optics for Space Application [J]. Optical Materials, 2010, 32: 1055-1059.

[18] Conseil C, Bastien J C, Boussard-Pledel C, et al. Te-based Chalcogenide Glasses for Far-infrared Optical Fiber [J]. Optical Materials Express, 2012, 2: 1470-1477.

[19] Danto S, Houizot P, Boussard-Pledel C, et al. A Family of Far-Infrared-Transmitting Glasses in the Ga-Ge-Te System for Space Applications [J].Advanced Functional Materials, 2006, 16(14): 1847-1852.

[20] Katsuyama T, Matsumura H. Low loss Te-based Chalcogenide Glass Optical Fibers [J]. Applied Physics Letters, 1986, 49(1): 22-23.

[21] Nishii J, Yamashita T, Yamagishi T. Chalcogenide Glass Fiber with a Core-cladding Structure [J]. Applied Optics, 1989, 28(23): 5122-5127.

[22] Maurugeon S, Boussard-Pledel C, Troles J, et al. Telluride Glass Step Index Fiber for the Far Infrared [J]. Journal of Lightwave Technology, 2010, 28(23): 3358-3363.

[23] Wehr M, Le Sergent C. Properties of Telluride Based Chalcogenide Glass Fibers for Thermal Infrared Transmission [C].SPIE, 1986, 618: 130-134.

[24] Nishii J, Yamashita T, Yamagishi T. Low Loss Chalcogenide Glass Fiber with Corecladding Structure [J]. Applied Physics Letters, 1988, 53(7): 553-554.

[25] Sanghera J S, Nguyen V Q, Pureza P C, et al. Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers [J].Journal of Lightwave Technology, 1994, 12(5): 737-741.

[26] Yang Z Y, Luo T, Jiang S B, et al. Single-mode Low-loss Optical Fibers for Long-wave Infrared Transmission [J]. Optics Letters, 2010, 35(20): 3360-3362.

[27] Zhang X H, Ma H L, Blanchetiere C, et al. Tellurium Halide IR Fibers for Remote Spectroscopy [C]. SPIE, 1994, 2131: 90-94.

[28] Blanchetiere C, Le Foulgoc K, Ma H L, et al. Tellurium Halide Glass Fibers: Preparation and Applications [J]. Journal of Non-Crystalline Solids, 1995, 184: 200-203.

[29] Neindre L, Smektala F, Le Foulgoc K, et al. Tellurium Halide Optical Fibers [J]. Journal of Non-Crystalline Solids, 1998, 242(2-3): 99-103.

[30] Le Coq D, Boussard-Pledel C, Fonteneau G, et al. Chalcogenide Double Index Fibers: Fabrication, Design, and Application as a Chemical Sensor [J]. Materials Research Bulletin, 2003, 38(13): 1745-1754.

[31] Shiryaev V S, Adam J L, Zhang X H, et al. Infrared Fibers based on Te-As-Se Glass System with Low Optical Losses [J]. Journal of Non-Crystalline Solids, 2004, 336(2): 113-119.

[32] Shiryaev V S, Boussard-Pledel C, Houizot P, et al. Single-mode Infrared Fibers Based on Te-As-Se Glass System [J]. Materials Science and Engineering B, 2006, 127: 138-143.

[33] Tao G M, Shabahang S, Ren H. Robust Multimaterial Tellurium-based Chalcogenide Glass Fibers for Mid-wavelength and Long-wavelength Infrared Transmission [J]. Optics Letters, 2014 (accepted).

[34] Kosolapov A K, Pryamikov A D, Biriukov A S, et al. Demonstration of CO2-laser Power Delivery through Chalcogenide-glass Fiber with Negative-curvature Hollow Core [J]. Optics Express, 2011, 19(25): 25723-25728.

[35] Churbanov M F, Shiryaev V S, Pushkin A A, et al. Origin of Microinhomogeneities in As-S-Se Glass Fibers Fabricated by the Double-crucible Method [J]. Inorganic Materials, 2007, 43(4): 436-440.

[36] Furniss D, Seddon A B. Towards Monomode Proportioned Fibreoptic Preforms by Extrusion [J]. Journal of Non-Crystalline Solids, 1999, 256: 232-236.

[37] Tao G M, Shabahang S, Banaei E H, et al. Multimaterial Preform Coextrusion for Robust Chalcogenide Optical Fibers and Tapers [J]. Optics Letters, 2012, 37(13): 2751-2753.

[38] Tao G M, Abouraddy A F, Stolyarov A M. Multimaterial Fibers [J]. International Journal of Applied Glass Science, 2012, 3(4): 349-368.

[39] 许彦涛,郭海涛,陆敏,等. 低损耗芯包结构Ge-Sb-Se硫系玻璃光纤的制备与性能研究[J]. 红外与激光工程, 2014 (已接收).

[40] Ropcke J, Davies P B, Lang N, et al. Applications of Quantum Cascade Lasers in Plasma Diagnostics: a Review [J]. Journal of Physics D: Applied Physics, 2012, 45(42): 423001.

[41] Parsons M T, Sydoryk I, Lin A, et al. Real-time Monitoring of Benzene, Toluene, and P-xylene in a Photoreaction Chamber with a Tunable Mid-infrared Laser and Ultraviolet Differential Optical Absorption Spectroscopy [J]. Applied Optics, 2011, 50(4): 90-99.

[42] Lucas P, Boussard-Pledel C, Wilhelm A. The Development of Advanced Optical Fibers for Long-wave Infrared Transmission [J]. Fibers, 2013, 1: 110-118.

[43] Yang Z Y, Gulbiten O, Lucas P, et al. Long-wave Infrared Transmitting Optical Fibers [J]. Journal of the American Ceramic Society, 2011, 94(6): 1761-1765.

[44] 孟 伟,郭海涛,许彦涛,等. 硫系红外玻璃材料耐辐射性能研究进展[J]. 硅酸盐学报, 2012, 40(8): 1229-1235.

任和, 陶光明, 杨安平, 郭海涛, 杨光, 许彦涛, 王训四, 杨志勇. 碲基硫系长波红外传输光纤的研究进展[J]. 红外, 2014, 35(4): 7. REN He, TAO Guang-ming, YANG An-ping, GUO Hai-tao, YANG Guang, XU Yan-tao, WANG Xun-si, YANG Zhi-yong. Research Progress of Tellurium-based Chalcogenide Long-wave Infrared Transmitting Fibers[J]. INFRARED, 2014, 35(4): 7.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!