中国光学, 2024, 17 (2): 423, 网络出版: 2024-04-15
融合全局和局部信息的铁谱图像自动对焦算法【增强内容出版】
An autofocus algorithm for fusing global and local information in ferrographic images
自动对焦 铁谱图像 全局信息 局部信息 深度学习 门控循环单元 autofocus ferrographic images global information local information deep learning gate recurrent unit
AI一图读本文 AI语音精读 AI语音超短摘要
注:本部分内容由 AI 自动生成,仅供您参考。对于您使用本站 AI 自动生成内容所产生的一切后果,本网站及平台运营方概不承担任何商业和法律责任,请您知悉。
摘要
针对铁谱图像获取时人工对焦误差大、速度慢等问题,提出了一种融合全局信息和局部信息的铁谱图像自动对焦方法。此方法分为两个阶段:全局对焦阶段利用卷积神经网络(Convolutional Neural Networks,CNN)提取整幅图像的特征向量,并利用门控循环单元(Gate Recurrent Unit,GRU)融合对焦过程提取的特征,预测当前全局离焦距离,起到粗对焦的作用;局部对焦阶段提取磨粒的特征向量,利用GRU融合当前特征与前一轮对焦提取的特征,并依据最厚磨粒信息,预测当前磨粒离焦距离,起到精对焦的作用。同时,为了提高对焦准确率,提出了结合拉普拉斯梯度的对焦方向判定法。实验结果表明,此算法在测试集上的对焦误差为2.51 μm,当景深为2.0 μm时对焦准确率为80.1%,平均对焦时间为0.771 s。本文提出的自动对焦方法具有较好的性能,为铁谱图像自动准确采集提供了技术支持。
Abstract
To address the issues of large error and slow speed of manual focusing in ferrographic image acquisition, we propose an autofocus method for fusing global and local information in ferrographic images. This method includes two stages. In the first stage, the global autofocus stage, the feature vectors of the whole image is extracted by Convolutional Neural Networks (CNN) , and the features extracted in the focus process is fused by the Gate Recurrent Unit (GRU) to predict global defocusing distance, which serves as coarse focusing. In the local autofocus stage, the feature vector of the wear particle is extracted and the current features is fused with those extracted in the previous focusing process by GRU. The current defocusing distance is predicted by the resulting fused data based on the information of the thickest particle, which facilitates fine focusing. Moreover, we propose a determination method for autofocus direction using Laplacian gradient function to improve autofocus accuracy. Experimental results indicate an autofocus error of 2.51 μm on the test set and a focusing accuracy of 80.1% with a microscope depth of field of 2.0 μm. The average autofocus time is 0.771 s. The automatic ferrographic image acquisition system exhibits excellent performance and offers a practical approach for its implementation.
刘信良, 张龙泉, 冷晟, 王静秋, 王晓雷. 融合全局和局部信息的铁谱图像自动对焦算法[J]. 中国光学, 2024, 17(2): 423. Xin-liang LIU, Long-quan ZHANG, Sheng LENG, Jing-qiu WANG, Xiao-lei WANG. An autofocus algorithm for fusing global and local information in ferrographic images[J]. Chinese Optics, 2024, 17(2): 423.