红外技术, 2019, 41 (2): 157, 网络出版: 2019-03-23  

基于 FSM的 Z型薄片式柔性结构力学性能分析

Mechanical Performance Analysis of Z-flake Flexible Structure Based on FSM
作者单位
1 西安工业大学光电工程学院, 陕西西安 710021
2 32180部队, 北京 100039
摘要
为了补偿光学成像系统在成像过程中受自身重量、振动以及温度变化等因素引起的相位误差, 设计了一种 Z型薄片式柔性支撑结构用于反射镜相位补偿。建立了 Z型薄片的力学模型, 推导了多组柔性薄片模型下的反射镜系统平移刚度和偏转刚度表达式, 根据刚度方程分析了薄片厚度及倾角对柔性支撑结构的力学影响。最后, 通过有限元分析对理论模型进行了仿真验证。针对 100 mm口径铝材反射镜仿真结果表明, 理论推导值与仿真结果相对误差小于 8%, 说明了所建力学模型与刚度方程的高准确性, 为柔性支撑结构的设计、力学分析以及参数优化提供了理论指导。
Abstract
A portable Z-wafer-type flexible supporting structure was designed to compensate the optical imaging system phase error caused by the lens body weight, environment vibration, and temperature interference. The mechanical model of this optical mount was established based on its working principles. The stiffness formulas of mirror system are deduced by multiple sets of flexible sheet. Chip thickness and dip angle are analyzed based on the stiffness equation of flexible supporting structure. Finally, the theoretical model was verified using finite element analysis. The 100-mm aluminum-reflector simulation results showed that the relative difference between the theoretical derivation and simulation results was less than 8%. The construction mechanics model and stiffness equation are highly accurate and could provide theoretical guidance for the design of flexible supporting structures, mechanics analysis, and parameter optimization.
参考文献

[1] 徐飞飞, 纪明, 赵创社. 快速偏转反射镜研究现状及关键技术[J]. 应用光学, 2010, 31(5): 847-850.

    XU Feifei, JI Ming, ZHAO Chuangshe. Status of fast steering mirror[J].Journal of Applied Optics, 2010, 31(5): 847-850.

[2] 张丽敏, 郭劲, 陈娟. 快速反射镜机械结构研究综述[J]. 光机电信息,2005(3): 21-24.

    ZHANG Limin, GUO Jin, CHEN Juan. Summary of the mechanic structure for fast-steering mirrors[J]. Ome. Information, 2005(3): 21-24.

[3] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision,two-axis steering mirror with moving iron actuator[J]. IFAC., 2010,43(18):552-557.

[4] 徐新行, 王兵, 庄昕宇, 等. 音圈电机驱动型快速控制反射镜机械结构研究[J]. 长春理工大学学报, 2011, 30(1): 25-30.

    XU Xinghang, WANG Bing, ZHUANG Xinyu, et al. Research on mechanical structure of fast-steering mirror driven by voice coil actuators[J]. Journal of Changchun University of Science and Technology,2011, 30(1): 25-30.

[5] Meinel A B. Cost scaling laws applicable to very large optical telescopes[J]. Proceedings of SPIE, 1979, 18(6): 645-647.

[6] 易宏伟. 光学稀疏孔径成像关键技术研究[D]. 西安: 西安光学精密机械研究所, 2007.

    YI Hongwei. Study on the Key Issues of the Optical Sparse-Aperture Imaging Systems[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics Chinese Academia of Science, 2017.

[7] 杨宁. 光学稀疏孔径成像系统相位补偿技术研究[D]. 长春: 长春理工大学, 2014.

    YANG Ning. Study of Phase Compensation Technique for Optical Sparsse-Aperture Imaging System[D]. Changchun: Changchun University of Science and Technology, 2014.

[8] Young W C, Budtnas R G. Roark ’s Formulas for Stress and Strain [M].7th Edition: New York: Mc Graw-Hill Book Company, 2002.

[9] Budtnas R G. Advanced Strength and Applied Stress Analysis[M]. New York: Mc Graw-Hill Book Company, 1977.

[10] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2016.

    LIU Hongwen. Mechanics of Materials[M]. Beijing: Higher EducationPress, 2016.

张超, 于洵, 马群, 陶禹. 基于 FSM的 Z型薄片式柔性结构力学性能分析[J]. 红外技术, 2019, 41(2): 157. ZHANG Chao, YU Xun, MA Qun, TAO Yu. Mechanical Performance Analysis of Z-flake Flexible Structure Based on FSM[J]. Infrared Technology, 2019, 41(2): 157.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!