红外与激光工程, 2019, 48 (1): 0103001, 网络出版: 2019-04-02   

高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)

High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)
作者单位
1 东莞理工学院 电子工程与智能化学院, 广东 东莞 523808
2 华中科技大学 物理学院, 湖北 武汉 430074
3 Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
引用该论文

孙敬华, 孙克雄, 林志芳, 孙继芬, 晋路, 徐永钊. 高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)[J]. 红外与激光工程, 2019, 48(1): 0103001.

Sun Jinghua, Sun Kexiong, Lin Zhifang, Sun Jifen, Jin Lu, Xu Yongzhao. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0103001.

参考文献

[1] Ell R, Morgner U, Kartner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Opt Lett, 2011, 26: 373.

[2] Eckstein J N, Ferguson A I, Hansch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Phys Rev Lett, 1978, 40: 847.

[3] Ranka J K, Winder R S, Stentz A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25: 25-27.

[4] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288: 635.

[5] Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D. H, Keller U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Appl Phys B, 1999, 69: 327.

[6] Diddams S A. The evolving optical frequency comb[J]. JOSA B, 2010, 27: B51-B62.

[7] Ye J, Cundiff S T. Femtosecond optical Frequency Comb Technology: Principle, Operation and Application[M]Berlin: Springer, 2005.

[8] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys Rev Let, 2000, 5102: 84.

[9] Udem Th, Holzwarth R, Hansch T W. Optical frequency metrology[J]. Nature, 2002, 233: 416.

[10] Holzwarth R, Udem Th, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Phys Rev Let, 2000, 85: 2264-2275.

[11] Ma L S, Bi Z, Bartels A, L, et al. Optical frequency synthesis and comparison with uncertainty at the 10-19 level[J]. Science, 2004, 303: 1843-1848.

[12] Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435: 321-324.

[13] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th Decimal Place[J]. Science, 2008, 319: 1808-1812.

[14] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506: 71.

[15] Blatt S, Ludlow A D, Campbell G K, et al. New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clock[J]. Phys Rev Lett, 2008, 100: 140801.

[16] Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Phys Rev D, 2016, 94: 124043.

[17] Julien Mandon, Guy Guelachvili, Nathalie Picqué. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photon, 2009, 3: 99.

[18] Joohyung Lee, Young Jin Kim, Keunwoo Lee, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photon, 2010, 4: 716.

[19] Yoshiaki Nakajima, Kaoru Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Opt Express, 2015, 23: 25979.

[20] van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Phys Rev Lett, 2012, 108: 183901.

[21] Zhao Xin, Hu Guoqing, Zhao Bofeng, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Opt Express, 2016, 24: 21833.

[22] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photon, 2009, 3: 351-356.

[23] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 2018, 359: 887.

[24] Kato T, Uchida M, Minoshima K. Non-scanning three-dimensional imaging using spectral interferometry with chirped frequency comb[C]//Conference on Lasers and Electro-Optics, 2016: SW1H.4.

[25] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Opt Express, 2011, 19: 18501.

[26] Danzmann K, the LISA study team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13: A247-A250.

[27] Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305: 503-505.

[28] Kurita T, Yoshida H, Kawashima T, et al. Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915nm laser diodes[J]. Opt Lett, 2012, 37: 3972-3974.

[29] Luo D, Liu Y, Gu C, et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Appl Phys Lett, 2018, 112: 061106.

[30] Zhou Shian, Lyuba Kuznetsova, Chong Andy, et al. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J]. Opt Express, 2005, 13: 4869-4877.

[31] Lyuba Kuznetsova, Frank W Wise. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Opt Lett, 2007, 32: 2671-2673.

[32] Hung-Wen Chen, JinKang Lim, Shu-Wei Huang et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Opt Express, 2012, 20: 28672-28682.

[33] Schibli T R, Hartl I, Yost D C, et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photon, 2008, 2: 355-359.

孙敬华, 孙克雄, 林志芳, 孙继芬, 晋路, 徐永钊. 高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)[J]. 红外与激光工程, 2019, 48(1): 0103001. Sun Jinghua, Sun Kexiong, Lin Zhifang, Sun Jifen, Jin Lu, Xu Yongzhao. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 0103001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!