Photonics Research, 2018, 6 (3): 03000186, Published Online: Jul. 10, 2018   

Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide Download: 969次

Author Affiliations
1 School of Physics and Technology, University of Jinan, Jinan 250022, China
2 e-mail: sps_xiaw@ujn.edu.cn
Copy Citation Text

Tao Chen, Liangling Wang, Lijuan Chen, Jing Wang, Haikun Zhang, Wei Xia. Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide[J]. Photonics Research, 2018, 6(3): 03000186.

References

[1] K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. A roadmap for graphene. Nature, 2012, 490: 192-200.

[2] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[3] S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, H. Zhang. Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photon. Res., 2017, 5: 662-668.

[4] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh. Broadband graphene polarizer. Nat. Photonics, 2011, 5: 411-415.

[5] Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, K. S. Chiang. Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Opt. Lett., 2014, 39: 6030-6033.

[6] M. Liu, X. Yin, X. Zhang. Double-layer graphene optical modulator. Nano Lett., 2012, 12: 1482-1485.

[7] L. Luo, K. Wang, C. Ge, K. Guo, F. Shen, Z. Yin, Z. Guo. Actively controllable terahertz switches with graphene-based nongroove gratings. Photon. Res., 2017, 5: 604-611.

[8] T. Mueller, F. Xia, P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photonics, 2010, 4: 297-301.

[9] H. Zhou, T. Gu, J. F. Mcmillan, N. Petrone, A. V. D. Zande, J. C. Hone, M. Yu, G. Lo, D. L. Kwong, G. Feng. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett., 2014, 105: 091111.

[10] L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi. Terahertz and infrared spectroscopy of gated large-area graphene. Nano Lett., 2012, 12: 3711-3715.

[11] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 2012, 6: 749-758.

[12] H. Lu, X. Gan, D. Mao, J. Zhao. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon. Res., 2017, 5: 162-167.

[13] M. Jablan, M. Soljačić, H. Buljan. Plasmons in graphene: fundamental properties and potential applications. Proc. IEEE, 2013, 101: 1689-1704.

[14] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 2011, 332: 1291-1294.

[15] C. Zhao, D. Mao, J. Zhao, L. Han, L. Fang, X. Gan, Y. Wang. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2: 468-471.

[16] F. Xie, H. J. Li, J. P. Liu, L. L. Wang, S. X. Xia, X. Zhai, X. Luo, X. J. Shang. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range. Opt. Express, 2016, 24: 5376-5386.

[17] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 2011, 6: 630-634.

[18] C. H. Gan. Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection. Appl. Phys. Lett., 2012, 101: 111609.

[19] T. J. Constant, S. M. Hornett, D. E. Chang, E. Hendry. All-optical generation of surface plasmons in graphene. Nat. Phys., 2016, 12: 124-127.

[20] X. He, S. Kim. Graphene-supported tunable waveguide structure in the terahertz regime. J. Opt. Soc. Am. B, 2013, 30: 2461-2468.

[21] X. Zhou, T. Zhang, L. Chen, W. Hong, X. Li. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol., 2014, 32: 4199-4203.

[22] W. Xu, Z. H. Zhu, K. Liu, J. F. Zhang, X. D. Yuan, Q. S. Lu, S. Q. Qin. Dielectric loaded graphene plasmon waveguide. Opt. Express, 2015, 23: 5147-5153.

[23] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 2007, 1: 97-105.

[24] A. Barh, B. M. A. Rahman, B. P. Pal, G. P. Agrawal, R. K. Varshney. Plastic fiber design for THz generation through wavelength translation. Opt. Lett., 2015, 40: 2107-2110.

[25] Y. Sun, G. Qiao, G. Sun. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides. Opt. Express, 2014, 22: 27880-27891.

[26] Y. Takushima, S. Shin, Y. C. Chung. Design of a LiNbO3 ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration. Opt. Express, 2007, 15: 14783-14792.

[27] Y. Huang, T. Wang, Y. Lin, C. Lee, M. Chuang, Y. Lin, F. Lin. Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide. Opt. Express, 2011, 19: 24577-24582.

[28] Y. H. Avetisyan. Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique. Opt. Lett., 2010, 35: 2508-2510.

[29] C. M. Staus, T. F. Kuech, L. McCaughan. AlxGa1−xAs nested waveguide heterostructures for continuously phase-matched terahertz difference frequency generation. Opt. Express, 2010, 18: 2332-2338.

[30] T. Chen, J. Sun, L. Li, J. Tang. Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide. J. Lightwave Technol., 2012, 30: 2156-2162.

[31] Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, S. Fan. Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides. Opt. Express, 2009, 17: 13502-13515.

[32] Y. Ge, J. Cao, Z. Shen, Y. Zheng, X. Chen, W. Wan. Terahertz wave generation by plasmonic-enhanced difference-frequency generation. J. Opt. Soc. Am. B, 2014, 31: 1533-1538.

[33] S. Rao, K. Moutzouris, M. Ebrahimzadeh, A. De Rossi, G. Gintz, M. Calligaro, V. Ortiz, V. Berger. Influence of scattering and two-photon absorption on the optical loss in GaAs–A2O3 nonlinear waveguides measured using femtosecond pulses. IEEE J. Quantum. Electron., 2003, 39: 478-486.

[34] J. Ota, W. Narita, I. Ohta, T. Matsushita, T. Kondo. Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm. Jpn. J. Appl. Phys., 2009, 48: 04C110.

[35] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1985).

[36] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 2016, 3: 823-826.

[37] T. W. Kim, T. Matsushita, T. Kondo. Phase-matched second-harmonic generation in thin rectangular high-index-contrast AlGaAs waveguides. Appl. Phys. Express, 2011, 4: 082201.

[38] Z. Fei, M. D. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. S. Mcleod, M. K. Liu, K. W. Post, S. Zhu, G. C. A. M. Janssen. Edge and surface plasmons in graphene nanoribbons. Nano Lett., 2015, 15: 8271-8276.

[39] C. T. Phare, Y. H. D. Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 2015, 9: 511-514.

[40] J. Wang, J. Sun, Q. Sun. Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror. Opt. Lett., 2007, 32: 1477-1479.

[41] P. Y. Chen, A. Alù. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855-5863.

[42] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67.

[43] F. H. L. Koppens, D. E. Chang, F. J. G. D. Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 2011, 11: 3370-3377.

[44] AgrawalG., Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

[45] L. Ottaviano, M. Pu, E. Semenova, K. Yvind. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. Opt. Lett., 2016, 41: 3996-3999.

[46] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. Mcleod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487: 82-85.

[47] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008, 146: 351-355.

Tao Chen, Liangling Wang, Lijuan Chen, Jing Wang, Haikun Zhang, Wei Xia. Tunable terahertz wave difference frequency generation in a graphene/AlGaAs surface plasmon waveguide[J]. Photonics Research, 2018, 6(3): 03000186.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!