光学学报, 2018, 38 (6): 0606008, 网络出版: 2018-07-09   

基于光子灯笼的正交频分/模分复用IM-DD多模光纤传输系统 下载: 1345次

Orthogonal Frequency Division/Mode Division Multiplexing IM-DD Multimode Fiber Transmission System Based on Photonic Lanterns
作者单位
1 上海先进通信与数据科学研究院, 上海 200444
2 上海大学特种光纤与光接入网重点实验室, 上海 200444
引用该论文

陈健, 黄青青, 张倩武, 王腾, 曾祥龙, 宋英雄, 李迎春, 张俊杰. 基于光子灯笼的正交频分/模分复用IM-DD多模光纤传输系统[J]. 光学学报, 2018, 38(6): 0606008.

Jian Chen, Qingqing Huang, Qianwu Zhang, Teng Wang, Xianglong Zeng, Yingxiong Song, Yingchun Li, Junjie Zhang. Orthogonal Frequency Division/Mode Division Multiplexing IM-DD Multimode Fiber Transmission System Based on Photonic Lanterns[J]. Acta Optica Sinica, 2018, 38(6): 0606008.

参考文献

[1] Gu H, Wang Z, Zhang B, et al. Time-division-multiplexing wavelength division multiplexing based architecture for ONoC[J]. Journal of Optical Communications & Networking, 2017, 9(5): 351-363.

    Gu H, Wang Z, Zhang B, et al. Time-division-multiplexing wavelength division multiplexing based architecture for ONoC[J]. Journal of Optical Communications & Networking, 2017, 9(5): 351-363.

[2] Aqrab I S, Aljunid S A. Rashidi C B M, et al. High performance with avalanche photodiode in wavelength/time optical code division multiple access[J]. Australian Journal of Basic and Applied Sciences, 2017, 10(15): 306-314.

    Aqrab I S, Aljunid S A. Rashidi C B M, et al. High performance with avalanche photodiode in wavelength/time optical code division multiple access[J]. Australian Journal of Basic and Applied Sciences, 2017, 10(15): 306-314.

[3] Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5: 3069.

    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5: 3069.

[4] 余骏, 黄鸣柳, 邹垚昭, 等. 偏振分集相干光 OFDM 通信系统中的相位噪声消除[J]. 光学学报, 2016, 36(8): 0806001.

    余骏, 黄鸣柳, 邹垚昭, 等. 偏振分集相干光 OFDM 通信系统中的相位噪声消除[J]. 光学学报, 2016, 36(8): 0806001.

    Yu J, Huang M L, Zou Y Z, et al. Phase noise cancellation for coherent optical OFDM system based on polarization diversity[J]. Acta Optica Sinica, 2016, 36(8): 0806001.

    Yu J, Huang M L, Zou Y Z, et al. Phase noise cancellation for coherent optical OFDM system based on polarization diversity[J]. Acta Optica Sinica, 2016, 36(8): 0806001.

[5] 李超, 赵健, 王伟, 等. 4×100 Gbit/s少模光纤长距离准单模双向传输的实验研究[J]. 中国激光, 2017, 44(2): 0206001.

    李超, 赵健, 王伟, 等. 4×100 Gbit/s少模光纤长距离准单模双向传输的实验研究[J]. 中国激光, 2017, 44(2): 0206001.

    Li C, Zhao J, Wang W, et al. 4×100 Gbit/s long-distance quasi-single-mode bi-directional transmission with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0206001.

    Li C, Zhao J, Wang W, et al. 4×100 Gbit/s long-distance quasi-single-mode bi-directional transmission with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0206001.

[6] Li A, Chen X, Amin A A, et al. Space-division multiplexed high-speed superchannel transmission over few-mode fiber[J]. Journal of Lightwave Technology, 2012, 30(24): 3953-3964.

    Li A, Chen X, Amin A A, et al. Space-division multiplexed high-speed superchannel transmission over few-mode fiber[J]. Journal of Lightwave Technology, 2012, 30(24): 3953-3964.

[7] Ip E, Li M J, Bennett K, et al. 146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10× 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA[J]. Journal of Lightwave Technology, 2014, 32(4): 790-797.

    Ip E, Li M J, Bennett K, et al. 146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10× 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA[J]. Journal of Lightwave Technology, 2014, 32(4): 790-797.

[8] Bai N, Ip E, Huang Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20(3): 2668-2680.

    Bai N, Ip E, Huang Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics Express, 2012, 20(3): 2668-2680.

[9] Zhang J, Li F, Li J, et al. 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams[J]. IEEE Photonics Journal, 2017, 9(4): 7202809.

    Zhang J, Li F, Li J, et al. 95.16-Gb/s mode-division-multiplexing signal transmission in free-space enabled by effective-conversion of vector beams[J]. IEEE Photonics Journal, 2017, 9(4): 7202809.

[10] Arik S O, Kahn J M, Ho K P. MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures[J]. IEEE Signal Processing Magazine, 2014, 31(2): 25-34.

    Arik S O, Kahn J M, Ho K P. MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures[J]. IEEE Signal Processing Magazine, 2014, 31(2): 25-34.

[11] Chang S H, Chung H S, Ryf R, et al. Mode-and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers[J]. Optics Express, 2015, 23(6): 7164-7172.

    Chang S H, Chung H S, Ryf R, et al. Mode-and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers[J]. Optics Express, 2015, 23(6): 7164-7172.

[12] Luo J, Li J, Sui Q, et al. 40 Gb/s mode-division multiplexed DD-OFDM transmission over standard multi-mode fiber[J]. IEEE Photonics Journal, 2017, 8(3): 7905207.

    Luo J, Li J, Sui Q, et al. 40 Gb/s mode-division multiplexed DD-OFDM transmission over standard multi-mode fiber[J]. IEEE Photonics Journal, 2017, 8(3): 7905207.

[13] Corral J L, Garcia R D, Llorente R. Mode-selective couplers for two-mode transmission at 850 nm in standard SMF[J]. IEEE Photonics Technology Letters, 2016, 28(4): 425-428.

    Corral J L, Garcia R D, Llorente R. Mode-selective couplers for two-mode transmission at 850 nm in standard SMF[J]. IEEE Photonics Technology Letters, 2016, 28(4): 425-428.

[14] Ren F, Li J, Wu Z, et al. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX[J]. Optics Communications, 2017, 383: 525-530.

    Ren F, Li J, Wu Z, et al. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX[J]. Optics Communications, 2017, 383: 525-530.

[15] Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. . Mode-selective photonic lanterns for space-division multiplexing[J]. Optics Express, 2014, 22(1): 1036-1044.

    Leon-Saval S G, Fontaine N K, Salazar-Gil J R, et al. . Mode-selective photonic lanterns for space-division multiplexing[J]. Optics Express, 2014, 22(1): 1036-1044.

[16] Chen H, Fontaine N K, Ryf R, et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology[J]. Journal of Lightwave Technology, 2015, 33(6): 1147-1154.

    Chen H, Fontaine N K, Ryf R, et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology[J]. Journal of Lightwave Technology, 2015, 33(6): 1147-1154.

[17] Huang B, Fontaine N K, Ryf R, et al. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers[J]. Optics Express, 2015, 23(1): 224-234.

    Huang B, Fontaine N K, Ryf R, et al. All-fiber mode-group-selective photonic lantern using graded-index multimode fibers[J]. Optics Express, 2015, 23(1): 224-234.

[18] RyfR, Fontaine NK, MontoliuM, et al. Photonic-lantern-based mode multiplexers for few-mode-fiber transmission[C]∥Optical Fiber Communication Conference. San Francisco, California UnitedStates, 2014, W4J:W4J. 2.

    RyfR, Fontaine NK, MontoliuM, et al. Photonic-lantern-based mode multiplexers for few-mode-fiber transmission[C]∥Optical Fiber Communication Conference. San Francisco, California UnitedStates, 2014, W4J:W4J. 2.

[19] AmezcuacorreaA, LiG, WenH, et al. 3×10 Gb/s mode group-multiplexed transmission over a 20 km few-mode fiber using photonic lanterns[C]∥Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA, 2017, 935: 16929816.

    AmezcuacorreaA, LiG, WenH, et al. 3×10 Gb/s mode group-multiplexed transmission over a 20 km few-mode fiber using photonic lanterns[C]∥Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA, 2017, 935: 16929816.

[20] 陈嘉轲, 胡贵军, 韩悦羽. 基于光子灯笼的3×3模分复用通信实验研究[J]. 中国激光, 2017, 44(11): 1106009.

    陈嘉轲, 胡贵军, 韩悦羽. 基于光子灯笼的3×3模分复用通信实验研究[J]. 中国激光, 2017, 44(11): 1106009.

    Chen J K, Hu G J, Han Y Y. Experimental research of three-mode mode division multiplexing communication system based on photonic lantern[J]. Chinese Journal of Lasers, 2017, 44(11): 1106009.

    Chen J K, Hu G J, Han Y Y. Experimental research of three-mode mode division multiplexing communication system based on photonic lantern[J]. Chinese Journal of Lasers, 2017, 44(11): 1106009.

陈健, 黄青青, 张倩武, 王腾, 曾祥龙, 宋英雄, 李迎春, 张俊杰. 基于光子灯笼的正交频分/模分复用IM-DD多模光纤传输系统[J]. 光学学报, 2018, 38(6): 0606008. Jian Chen, Qingqing Huang, Qianwu Zhang, Teng Wang, Xianglong Zeng, Yingxiong Song, Yingchun Li, Junjie Zhang. Orthogonal Frequency Division/Mode Division Multiplexing IM-DD Multimode Fiber Transmission System Based on Photonic Lanterns[J]. Acta Optica Sinica, 2018, 38(6): 0606008.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!