红外与激光工程, 2020, 49 (3): 0303010, 网络出版: 2020-04-22   

基于相位编码的三维测量技术研究进展 下载: 770次

Research progress of 3D measurement technology based on phase coding
作者单位
1 南昌航空大学 无损检测技术教育部重点实验室,江西 南昌 330063
2 东莞市吉洋自动化科技有限公司,广东 东莞 523000
引用该论文

伏燕军, 韩勇华, 陈元, 张鹏飞, 桂建楠, 钟可君, 黄采敏. 基于相位编码的三维测量技术研究进展[J]. 红外与激光工程, 2020, 49(3): 0303010.

Yanjun Fu, Yonghua Han, Yuan Chen, Pengfei Zhang, Jiannan Gui, Kequn Zhong, Caimin Huang. Research progress of 3D measurement technology based on phase coding[J]. Infrared and Laser Engineering, 2020, 49(3): 0303010.

参考文献

[1] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982.

[2] Chen F, Brown G M, Song M. Overview of 3-D shape measurement using optical methods[J]. Optical Engineering, 2000, 39(1): 1-22.

[3] Bračun D, Sluga A. Stereo vision based measuring system for online welding path inspection[J]. Journal of Materials Processing Technology, 2015, 223: 328-336.

[4] Quan Yanming, Li Shumei, Mai Qingqun. The dimension of workpiece based on binocular vision is measured in three dimensions[J]. Optics and Precision Engineering, 2013, 21(4): 1054-1061.

[5] Agatston A S, Janowitz W R, Hildner F J. Quantification of coronary artery calcium using ultrafast computed tomography[J]. Journal of the American College of Cardiology, 1990, 15(4): 827-832.

[6] Brenner D J, Hall E J. Computed tomography—an increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277-2284.

[7] Yuan D, Ye Feng, Yang Ling. Research on interactive 3d measurement of medical images based on VTK[J]. Computer Engineering and Design, 2008, 29(13): 3549-3550.

[8] Marras W S, Lavender S A, Leurgans S E. The role of dynamic three-dimensional trunk motion in occupationally-related[J]. Spine, 1993, 18(5): 617-628.

[9] Moeslund T B, Granum E. A survey of computer vision-based human motion capture[J]. Computer Vision and Image Understanding, 2001, 81(3): 231-268.

[10] Steuer J. Defining virtual reality: Dimensions determining telepresence[J]. Journal of Communication, 1992, 42(4): 73-93.

[11] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.

[12] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.

[13] Zuo C, Huang L, Zhang M. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103.

[14] Pan B, Kemao Q, Huang L. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-418.

[15] Li S, Liu S, Zhang H. 3D shape measurement of optical freefm surface based on fringe projection[C]Optical Measurement Systems f Industrial Inspection VⅡ. International Society f Optics Photonics, 2011, 8082: 80822Z.

[16] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

[17] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 1985, 24(18): 3053-3058.

[18] Gastón A A, J Matías Di Martino, Julia R A. Three-dimensional profiling with binary fringes using phase-shifting interferome try algorithms[J]. Applied Optics, 2011, 50(2): 147-154.

[19] Zuo C, Feng S, Huang L. Phase shifting algorithms for fringe projection profilometry: A review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59.

[20] Zhang T, Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography[J]. Optics Letters, 1998, 23(15): 1221-1223.

[21] Mitsuo Takeda, Hideki Ina, Seiji Kobayashi. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1): 156-160.

[22] Li Jian, Su Xianyu, Guo Lurong. An improved Fourier transform profilometry for automatic measurement of 3-D object shapes[J]. Optics Engineering, 1990, 29(12): 1439-44.

[23] Su Xianyu, Chen Wenjing. Fourier transform profilomitry: a review[J]. Optics and Lasers in Engineering, 2001, 35(5): 263-284.

[24] Chen K, Xi J, Yu Y. Quality-guided spatial phase unwrapping algorithm for fast three-dimensional measurement[J]. Optics Communications, 2013, 294: 139-147.

[25] Zhang S. Absolute phase retrieval methods for digital fringe projection profilometry: A review[J]. Optics and Lasers in Engineering, 2018, 107: 28-37.

[26] Wu L, Peng Q. Research and development of fringe projection-based methods in 3D shape reconstruction[J]. Journal of Zhejiang University-Science A, 2006, 7(6): 1026-1036.

[27] Chen K, Xi J, Yu Y, et al. A composite qualityguided phase unwrapping algithm f fast 3D profile measurement[C]Optical Metrology Inspection f Industrial Applications Ⅱ. International Society f Optics Photonics, 2012, 8563: 856305.

[28] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

[29] Saldner H O, Huntley J M. Temporal phase unwrapping: application to surface profiling of discontinuous objects[J]. Applied Optics,, 1997, 36(13): 2770-2775.

[30] Du G, Zhang C, Zhou C. Iterative two-step temporal phase-unwrapping applied to high sensitivity three-dimensional profilometry[J]. Optics and Lasers in Engineering, 2016, 79: 22-28.

[31] Huntley J M, Saldner H O. Shape measurement by temporal phase unwrapping: comparison of unwrapping algorithms[J]. Measurement Science and Technology, 1997, 8(9): 986.

[32] Zhu J, Zhou P, Su X. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination[J]. Optics Express, 2016, 24(25): 28549-28560.

[33] Li L L, Su X Y, Dou Y F. Error analysis and algorithm design of temporal phase unwrapping[J]. Journal of Sichuan University (Natural Science Edition), 2012, 49(1): 102-108.

[34] Tian J, Peng X, Zhao X. A generalized temporal phase unwrapping algorithm for three-dimensional profilometry[J]. Optics and Lasers in Engineering, 2008, 46(4): 336-342.

[35] Servin M, Padilla M, Garnica G. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry[J]. Optics and Lasers in Engineering, 2016, 87: 75-82.

[36] Xu Z H, Su X Y. An algorithm of temporal phase unwrapping[J]. J Sichuan University (Natural Science Edition), 2008, 45: 537-540.

[37] Servin M, Cuevas F J. A novel technique for spatial phase-shifting interferometry[J]. Journal of Modern Optics, 1995, 42(9): 1853-1862.

[38] Bothe T, Burke J, Helmers H. Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors[J]. Applied Optics, 1997, 36(22): 5310-5316.

[39] Bhaduri B, Mohan N K, Kothiyal M P. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS)[J]. Optics Express, 2006, 14(24): 11598-11607.

[40] Salfity M F, Ruiz P D, Huntley J M. Branch cut surface placement for unwrapping of undersampled three-dimensional phase data: application to magnetic resonance imaging arterial flow mapping[J]. Applied Optics, 2006, 45(12): 2711-2722.

[41] Gutmann B, Weber H. Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing[J]. Applied Optics, 1999, 38(26): 5577-5593.

[42] Zhao M, Huang L, Zhang Q. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies[J]. Applied Optics, 2011, 50(33): 6214-6224.

[43] Zhang S, Li X, Yau S T. Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction[J]. Applied Optics, 2007, 46(1): 50-57.

[44] Kemao Q, Gao W, Wang H. Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm[J]. Applied Optics, 2008, 47(29): 5420-5428.

[45] Zhong H, Tang J, Zhang S. An improved quality-guided phase-unwrapping algorithm based on priority queue[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2): 364-368.

[46] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 1993, 32(17): 3047-3052.

[47] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 1999, 38(31): 6565-6573.

[48] Sansoni G, Corini S, Lazzari S. Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications[J]. Applied Optics, 1997, 36(19): 4463-4472.

[49] Zheng D, Da F. Self-correction phase unwrapping method based on Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(8): 1130-1139.

[50] Zheng D, Da F, Kemao Q. Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter[J]. Optics Express, 2017, 25(5): 4700-4713.

[51] Yu S, Zhang J, Yu X. 3D measurement using combined Gray code and dual-frequency phase-shifting approach[J]. Optics Communications, 2018, 413: 283-290.

[52] Chen X, Xi J, Jin Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection[J]. Optical Engineering, 2008, 47(11): 113601.

[53] Nguyen H, Nguyen D, Wang Z. Real-time, high-accuracy 3D imaging and shape measurement[J]. Applied Optics, 2015, 54(1): A9-A17.

[54] Chen L, Deng W Y, Lou X P. Phase unwrapping method base on multi-frequency interferometry[J]. Optical Technique, 2012, 38(1): 73-78.

[55] Koo J, Cho T. A 3D measurement system based on a double frequency method using Fourier transform profilometry[J]. Journal of the Korea Institute of Information and Communication Engineering, 2015, 19(6): 1485-1492.

[56] Li B, Yang J, Wu H, et al. A new threedimensional shape measurement method based on doublefrequency fringes[C]AOPC 2015: Optical Test, Measurement, Equipment. International Society f Optics Photonics, 2015, 9677: 96770H.

[57] Zhao H, Zhang C. Phase unwrapping algithm based on doublefrequency fringe projection fringe background[C]The International Conference on Photonics Optical Engineering (icPOE 2014). International Society f Optics Photonics, 2015, 9449: 944905.

[58] Wang Y, Laughner J I, Efimov I R. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique[J]. Optics Express, 2013, 21(5): 5822-5832.

[59] Su W H, Liu H. Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities[J]. Optics Express, 2006, 14(20): 9178-9187.

[60] Ding Y, Xi J, Yu Y. Frequency selection in absolute phase maps recovery with two frequency projection fringes[J]. Optics Express, 2012, 20(12): 13238-13251.

[61] Li Z, Shi Y, Wang C. Realtime complex object 3D measurement[C]2009 International Conference on Computer Modeling Simulation. IEEE, 2009: 191193.

[62] Huang Y, Li Z, Shi Y. 3D measurement technology based on multifrequency heterodyne principle[J]. New Technology & New Process, 2008, 12: 37-40.

[63] Liu S, Feng W, Zhang Q, et al. Threedimensional shape measurement of small object based on trifrequency heterodyne method[C]2015 International Conference on Optical Instruments Technology: Optoelectronic Measurement Technology Systems. International Society f Optics Photonics, 2015, 9623: 96231C.

[64] Lei Z, Wang C, Zhou C. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineering, 2015, 66: 249-257.

[65] Wang Z. Three-dimensional surface imaging by multi-frequency phase shift profilometry with angle and pattern modeling for system calibration[J]. Measurement Science and Technology, 2016, 27(8): 085404.

[66] Hyun J S, Zhang S. Enhanced two-frequency phase-shifting method[J]. Applied Optics, 2016, 55(16): 4395-4401.

[67] Li Z, Wang C. A prototype system f high precision 3D measurement based on grating method[C]Optical Design Testing Ⅲ. International Society f Optics Photonics, 2007, 6834: 683442.

[68] Huang H Q, Fang X Z, Zhang W. Defocusing rectified multi-frequency patterns for high-precision 3D measurement[J]. Measurement Science and Technology, 2014, 25(3): 035009.

[69] Lou X, Lv N, Sun P, et al. Heterodyne multifrequency method f 3D profile measurement[C]Fourth International Seminar on Modern Cutting Measurement Engineering. International Society f Optics Photonics, 2011, 7997: 799724.

[70] Xiao Z, Chee O, Asundi A. An accurate 3D inspection system using heterodyne multiple frequency phase-shifting algorithm[J]. Physics Procedia, 2011, 19: 115-121.

[71] Yao Y, Guo J. The 3D optical measurement system based on Multifrequency Heterodyne Principle[C]2012 7th International Conference on Computing Convergence Technology (ICCCT). IEEE, 2012: 11301134.

[72] Wang L, Song L, Zhong L J, et al. Multifrequency heterodyne phase shift technology in 3D measurement[C]Advanced Materials Research. Trans Tech Publications, 2013, 774: 1582−1585.

[73] Xu Y, Jia S, Luo X. Multi-frequency projected fringe profilometry for measuring objects with large depth discontinuities[J]. Optics Communications, 2013, 288: 27-30.

[74] Jiang C, Jia S, Dong J. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects[J]. Optics Express, 2015, 23(19): 24152-24162.

[75] Zhang X, Zhang Z, Cheng W. Iterative project calibration using multifrequency phaseshifting method[C]2015 IEEE 7th International Conference on Cyberics Intelligent Systems (CIS) IEEE Conference on Robotics, Automation Mechatronics (RAM). IEEE, 2015: 16.

[76] Song L M, Chen C M, Zhang L. High precision global phase unwrapping method used in the multi-frequency 3D measurement[J]. Opt Electron Eng, 2012, 39(12): 18-25.

[77] Zhang S, Yau S T. High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method[J]. Optics Express, 2006, 14(7): 2644-2649.

[78] Huang P S, Zhang S. Fast three-step phase-shifting algorithm[J]. Applied Optics, 2006, 45(21): 5086-5091.

[79] Li Z, Shi Y, Wang C. Complex object 3D measurement based on phase-shifting and a neural network[J]. Optics Communications, 2009, 282(14): 2699-2706.

[80] Huang P, Zhang S. 3d shape measurement system method including fast threestep phase shifting, err compensation calibration: U.S. Patent Application 11552, 520[P]. 2007524.

[81] Zhang S. Composite phase-shifting algorithm for absolute phase measurement[J]. Optics and Lasers in Engineering, 2012, 50(11): 1538-1541.

[82] Zhang S. High-resolution 3D profilometry with binary phase-shifting methods[J]. Applied Optics, 2011, 50(12): 1753-1757.

[83] Yang F, He X. Two-step phase-shifting fringe projection profilometry: intensity derivative approach[J]. Applied Optics, 2007, 46(29): 7172-7178.

[84] Zhang S. Digital multiple wavelength phase shifting algithm[C]Optical Inspection Metrology f NonOptics Industries. International Society f Optics Photonics, 2009, 7432: 74320N.

[85] Wang Y, Liu L, Wu J. Dynamic three-dimensional shape measurement with a complementary phase-coding method[J]. Optics and Lasers in Engineering, 2020, 127: 105982.

[86] Wang Y, Zhang S. Novel phase-coding method for absolute phase retrieval[J]. Optics Letters, 2012, 37(11): 2067-2069.

[87] Zheng D, Da F. Phase coding method for absolute phase retrieval with a large number of codewords[J]. Optics Express, 2012, 20(22): 24139-24150.

[88] Zhou C, Liu T, Si S. An improved stair phase encoding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2015, 66: 269-278.

[89] Li B, Fu Y, Zhang J. A fast three-dimensional shape measurement method based on color phase coding[J]. Optik, 2016, 127(3): 1011-1015.

[90] Li B, Fu Y, Zhang J. Period correction method of phase coding fringe[J]. Optical Review, 2015, 22(5): 717-723.

[91] Zeng Z, Li B, Fu Y. Stair phase-coding fringe plus phase-shifting used in 3D measuring profilometry[J]. Journal of the European Optical Society-Rapid Publications, 2016, 12(1): 9.

[92] Chen X, Wang Y, Wang Y. Quantized phase coding and connected region labeling for absolute phase retrieval[J]. Optics Express, 2016, 24(25): 28613-28624.

[93] Xing Y, Quan C, Tay C J. A modified phase-coding method for absolute phase retrieval[J]. Optics and Lasers in Engineering, 2016, 87: 97-102.

[94] Zhang Q, Su X, Xiang L. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.

[95] Wang Y, Chen X, Huang L. Improved phase-coding methods with fewer patterns for 3D shape measurement[J]. Optics Communications, 2017, 401: 6-10.

[96] Hyun J S, Zhang S. Superfast 3D absolute shape measurement using five binary patterns[J]. Optics and Lasers in Engineering, 2017, 90: 217-224.

[97] Cheng T, Du Q, Jiang Y. Absolute phase retrieval via color phase-coding[J]. Optik, 2017, 140: 1056-1062.

[98] Wang L, Chen Y, Han X. A 3D shape measurement method based on novel segmented quantization phase coding[J]. Optics and Lasers in Engineering, 2019, 113: 62-70.

[99] Zhou H, Gao J, Hu H. Fast phase-measuring profilometry through composite color-coding method[J]. Optics Communications, 2019, 440: 220-228.

[100] Chen Y, Han X, Zhang P. 3D measurement method based on S-shaped segmental phase encoding[J]. Optics and Laser Technology, 2020, 121: 105781.

[101] Caspi D, Kiryati N, Shamir J. Range imaging with adaptive color structured light[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 470-480.

[102] Fu Y, Wang Y, Wan M. Three-dimensional profile measurement of the blade based on surface structured light[J]. Optik, 2013, 124(18): 3225-3229.

[103] Han Xu, Wang Lin, Fu Yanjun. Phase unwrapping method of dual frequency heterodyne combined with phase coding[J]. Infrared and Laser Engineering, 2019, 48(9): 09110031.

伏燕军, 韩勇华, 陈元, 张鹏飞, 桂建楠, 钟可君, 黄采敏. 基于相位编码的三维测量技术研究进展[J]. 红外与激光工程, 2020, 49(3): 0303010. Yanjun Fu, Yonghua Han, Yuan Chen, Pengfei Zhang, Jiannan Gui, Kequn Zhong, Caimin Huang. Research progress of 3D measurement technology based on phase coding[J]. Infrared and Laser Engineering, 2020, 49(3): 0303010.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!