Advanced Photonics, 2019, 1 (6): 066003, Published Online: Dec. 30, 2019  

Nonlinear, tunable, and active optical metasurface with liquid film Download: 590次

Author Affiliations
University of California, Department of Electrical and Computer Engineering, San Diego, La Jolla, California, United States
Copy Citation Text

Shimon Rubin, Yeshaiahu Fainman. Nonlinear, tunable, and active optical metasurface with liquid film[J]. Advanced Photonics, 2019, 1(6): 066003.

References

[1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2062.

[2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489.

[3] A. Blanco, et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000, 405: 437-440.

[4] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 1990, 65(25): 3152-3155.

[5] J. B. Pendry, et al.. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996, 76(25): 4773-4776.

[6] E. Yablonovitch, et al.. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett., 1991, 67(24): 3380-3383.

[7] O. Painter, et al.. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1821.

[8] M. Notomi. Manipulating light with strongly modulated photonic crystals. Rep. Prog. Phys., 2010, 73(9): 096501.

[9] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[10] A. Arbabi, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10(11): 937-943.

[11] J. S. T. Smalley, et al.. Luminescent hyperbolic metasurfaces. Nat. Commun., 2017, 8: 13793.

[12] A. I. Kuznetsov, et al.. Optically resonant dielectric nanostructures. Science, 2016, 354(6314): aag2472.

[13] I. V.Shadrivov, M.Lapine and Y. S.Kivshar, Nonlinear, Tunable and Active Metamaterials, Springer, Cham, Switzerland (2015).

[14] S. Longhi. Quantum-optical analogies using photonic structures. Laser Photonics Rev., 2009, 3(3): 243-261.

[15] A. H. C. Neto, et al.. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109-162.

[16] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 2008, 78(3): 033834.

[17] R. A. Sepkhanov, Y. B. Bazaliy, C. W. Beenakker. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A, 2007, 75(6): 063813.

[18] O. Bahat-Treidel, et al.. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett., 2010, 104(8): 063901.

[19] O. Bahat-Treidel, O. Peleg, M. Segev. Symmetry breaking in honeycomb photonic lattices. Opt. Lett., 2008, 33(19): 2251-2253.

[20] O. Peleg, et al.. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 2007, 98(10): 103901.

[21] M. J. Ablowitz, S. D. Nixon, Y. Zhu. Conical diffraction in honeycomb lattices. Phys. Rev. A, 2009, 79(5): 053830.

[22] H. Kogelnik, C. V. Shank. Stimulated emission in a periodic structure. Appl. Phys. Lett., 1971, 18: 152-154.

[23] C. V. Shank, J. E. Bjorkholm, H. Kogelnik. Tunable distributed-feedback dye laser. Appl. Phys. Lett., 1971, 18(9): 395-396.

[24] M. Meier, et al.. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett., 1999, 74(1): 7-9.

[25] W. Zhou, et al.. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol., 2013, 8(7): 506-511.

[26] M. Karl, et al.. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun., 2018, 9(1): 1525.

[27] L. Ju, et al.. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 2011, 6(10): 630-634.

[28] S. Xiao, et al.. Tunable magnetic response of metamaterials. Appl. Phys. Lett., 2009, 95(3): 033115.

[29] Z. Li, et al.. Mechanically tunable optofluidic distributed feedback dye laser. Opt. Express, 2006, 14(22): 10494-10499.

[30] D. Psaltis, S. R. Quake, C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 2006, 442: 381-386.

[31] K. Busch, S. John. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett., 1999, 83(5): 967-970.

[32] A. Bakal, et al.. Tunable on chip optofluidic laser. Appl. Phys. Lett., 2015, 107(21): 211105.

[33] V. N. Smolyaninova, et al.. Self-assembled tunable photonic hyper-crystals. Sci. Rep., 2015, 4: 5706.

[34] M. Gersborg-Hansen, A. Kristensen. Tunability of optofluidic distributed feedback dye lasers. Opt. Express, 2007, 15(1): 137-142.

[35] F. B. Arango, et al.. Optofluidic tuning of photonic crystal band edge lasers. Appl. Phys. Lett., 2007, 91(22): 223503.

[36] S. Rubin, Y. Fainman. Nonlocal and nonlinear surface plasmon polaritons and optical spatial solitons induced by the thermocapillary effect. Phys. Rev. Lett., 2018, 120(24): 243904.

[37] S. Rubin, B. Hong, Y. Fainman. Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl., 2019, 8(1): 1-11.

[38] V. G.Levich, Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, New Jersey (1962).

[39] H. M. J. M. Wedershoven, et al.. Infrared laser induced rupture of thin liquid films on stationary substrates. Appl. Phys. Lett., 2014, 104(5): 054101.

[40] J. Muller, H. M. J. M. Wedershoven, A. A. Darhuber. Monitoring photochemical reactions using Marangoni flows. Langmuir, 2017, 33(15): 3647-3658.

[41] H.Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin (2013).

[42] H.Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, and T.Tamir, Eds., Vol. 26, pp. 1381, Springer Series in Electronics and Photonics, Springer, Berlin, Heidelberg (1975).

[43] V. V. Yaminsky, et al.. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions. Langmuir, 2010, 26(11): 8061-8074.

[44] A.Patsyket al., “Observation of branched flow of light,” in CLEO: QELS Fundamental Sci., Optical Society of America (2019).

[45] Y. Lamhot, et al.. Optical control of thermocapillary effects in complex nanofluids. Phys. Rev. Lett., 2009, 103(26): 264503.

[46] J.Happel and H.Brenner, Low Reynolds Number Hydrodynamics, pp. 431441, Martinus Nijhoff, The Hague (1983).

[47] I. S. Aranson, L. Kramer. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys., 2002, 74: 99-143.

[48] A. Marini, D. V. Skryabin. Ginzburg–Landau equation bound to the metal–dielectric interface and transverse nonlinear optics with amplified plasmon polaritons. Phys. Rev. A, 2010, 81(3): 033850.

[49] A. Davoyan, et al.. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett., 2010, 105(11): 116804.

[50] H. J.Eichleret al., Laser-Induced Dynamic Gratings, Vol. 50, Springer, Berlin (2013).

[51] P. R. Wallace. The band theory of graphite. Phys. Rev., 1947, 71(9): 622-634.

[52] G.Lifante, Integrated Photonics: Fundamentals, John Wiley & Sons, Hoboken, New Jersey (2003).

[53] T.Suhara, Semiconductor Laser Fundamentals, CRC Press, Boca Raton, Florida (2004).

[54] H. Kogelnik, C. V. Shank. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys., 1972, 43(5): 2327-2335.

[55] A.Yariv and P.Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, Oxford (2006).

[56] J. M.Liu, Photonic Devices, Cambridge University Press, Cambridge (2009).

[57] M. J. Ablowitz, Y. Zhu. Evolution of Bloch-mode envelopes in two-dimensional generalized honeycomb lattices. Phys. Rev. A, 2010, 82(1): 013840.

[58] M. J. Ablowitz, Y. Zhu. Nonlinear wave packets in deformed honeycomb lattices. SIAM J. Appl. Math., 2013, 73(6): 1959-1979.

[59] M. I. Shalaev, et al.. Reconfigurable topological photonic crystal. New J. Phys., 2018, 20(2): 023040.

[60] K. E. Oughstun, N. A. Cartwright. On the Lorentz–Lorenz formula and the Lorentz model of dielectric dispersion. Opt. Express, 2003, 11(13): 1541-1546.

[61] S.-L. Zhu, B. Wang, L.-M. Duan. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett., 2007, 98(26): 260402.

[62] L. Tarruell, et al.. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483: 302-305.

[63] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 2019, 363(6433): 1333-1338.

[64] A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 1997, 69(3): 931-980.

[65] S.Hassani, Mathematical Physics: A Modern Introduction to Its Foundations, Springer Science & Business Media, Berlin (2013).

Shimon Rubin, Yeshaiahu Fainman. Nonlinear, tunable, and active optical metasurface with liquid film[J]. Advanced Photonics, 2019, 1(6): 066003.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!