中国激光, 2020, 47 (10): 1001001, 网络出版: 2020-10-09   

高精度同步飞秒和皮秒脉冲产生技术 下载: 1108次

High-Precision Synchronous Femtosecond and Picosecond Pulse Generation
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
3 济南量子技术研究院, 山东 济南 250101
引用该论文

钱富琛, 郭政儒, 董文乾, 胡晓蕾, 陈飞, 郝强, 曾和平. 高精度同步飞秒和皮秒脉冲产生技术[J]. 中国激光, 2020, 47(10): 1001001.

Qian Fuchen, Guo Zhengru, Dong Wenqian, Hu Xiaolei, Chen Fei, Hao Qiang, Zeng Heping. High-Precision Synchronous Femtosecond and Picosecond Pulse Generation[J]. Chinese Journal of Lasers, 2020, 47(10): 1001001.

参考文献

[1] Rohwetter P, Yu J, Méjean G, et al. Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(4): 437-444.

[2] 王一霖, 杨凌辉, 林嘉睿, 等. 基于飞秒光学频率梳相关探测的绝对测距[J]. 光学学报, 2019, 39(1): 0112003.

    Wang Y L, Yang L H, Lin J R, et al. Absolute distance measurement based on coherent detection by femtosecond optical frequency comb[J]. Acta Optica Sinica, 2019, 39(1): 0112003.

[3] 胡小豹, 郝强, 郭政儒, 等. 全光纤皮秒激光切割蓝宝石晶圆的实验研究[J]. 中国激光, 2017, 44(1): 0102016.

    Hu X B, Hao Q, Guo Z R, et al. Dicing of sapphire wafer with all-fiber picosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102016.

[4] 郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008.

    Zheng S K, Yang K W, Ao J P, et al. Advances in fiber laser sources for coherent Raman scattering microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

[5] 魏志义. 2005年诺贝尔物理学奖与光学频率梳[J]. 物理, 2006, 35(3): 213-217.

    Wei Z Y. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics, 2006, 35(3): 213-217.

[6] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-640.

[7] Jia Y, Zhao N J, Liu W Q, et al. Continuous online detection method of heavy metals in water based on LIBS technology[J]. Chinese Journal of Lasers, 2018, 45(6): 0611001.

[8] Angel S M, Stratis D N, Eland K L, et al. LIBS using dual- and ultra-short laser pulses[J]. Fresenius' Journal of Analytical Chemistry, 2001, 369(3/4): 320-327.

[9] Balachninaitē O, Baskevicius A, Stankeviciūtē K, et al. Double-pulse laser-induced breakdown spectroscopy with 1030 and 257.5 nm wavelength femtosecond laser pulses[J]. Lithuanian Journal of Physics, 2010, 50(1): 105-110.

[10] Elsayed K, Imam H, Harfoosh A, et al. Design and construction of Q-switched Nd∶YAG laser system for LIBS measurements[J]. Optics & Laser Technology, 2012, 44(1): 130-135.

[11] 余霞, 罗佳琪, 肖晓晟, 等. 高功率超快光纤激光器研究进展[J]. 中国激光, 2019, 46(5): 0508007.

    Yu X, Luo J Q, Xiao X S, et al. Research progress of high-power ultrafast fiber lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508007.

[12] 陆云峰, 王毅, 刘斌, 等. 1.5 MW峰值功率光纤-固体混合放大MOPA激光系统[J]. 中国激光, 2015, 42(2): 0202009.

    Lu Y F, Wang Y, Liu B, et al. 1.5 MW peak power, fiber-solid hybrid amplification MOPA lasers[J]. Chinese Journal of Lasers, 2015, 42(2): 0202009.

[13] Fermann M E, Hofer M, Haberl F, et al. Additive-pulse-compression mode locking of a neodymium fiber laser[J]. Optics Letters, 1991, 16(4): 244-246.

[14] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[15] Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

[16] Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319.

[17] Stutzki F, Jansen F, Liem A, et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 2012, 37(6): 1073-1075.

[18] 李磐, 师红星, 符聪, 等. 激光清洗用高功率纳秒脉冲掺镱光纤激光器[J]. 激光与光电子学进展, 2018, 55(12): 121406.

    Li P, Shi H X, Fu C, et al. High power nanosecond pulsed ytterbium-doped fiber laser for laser cleanning[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121406.

[19] 王世杰, 张志伦, 曹驰, 等. 利用国产光纤实现平均功率761 W、脉冲能量17.5 mJ纳秒脉冲激光输出[J]. 中国激光, 2019, 46(12): 1215001.

    Wang S J, Zhang Z L, Cao C, et al. Nanosecond pulse laser output with average power of 761 W and pulse energy of 17.5 mJ based on domestic fiber[J]. Chinese Journal of Lasers, 2019, 46(12): 1215001.

[20] 贺明洋, 李敏, 袁帅, 等. 高功率飞秒自相似光纤激光放大系统[J]. 中国激光, 2020, 47(3): 0308001.

    He M Y, Li M, Yuan S, et al. High-power femtosecond self-similar fiber amplification system[J]. Chinese Journal of Lasers, 2020, 47(3): 0308001.

[21] 黄培, 甘泽彪, 李文启, 等. 用于大口径钛宝石放大器的四路钕玻璃抽运源[J]. 中国激光, 2018, 45(8): 0801001.

    Huang P, Gan Z B, Li W Q, et al. Four-outputs Nd: glass pump source for large aperture Ti∶sapphire amplifier[J]. Chinese Journal of Lasers, 2018, 45(8): 0801001.

[22] 林洪沂, 吴铭钰, 孙栋, 等. 准相位匹配PPMgLN腔内倍频绿激光器研究进展[J]. 激光与光电子学进展, 2019, 56(19): 190001.

    Lin H Y, Wu M Y, Sun D, et al. Research progress of green lasers based on quasi-phase-matched intracavity frequency doubling in PPMgLN[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190001.

[23] Guichard F, Zaouter Y, Hanna M, et al. High-energy chirped- and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 2015, 40(1): 89-92.

[24] 赵明, 郝强, 郭政儒, 等. 结构紧凑的kHz重复频率光纤-固体皮秒激光光源[J]. 中国激光, 2018, 45(4): 0401010.

    Zhao M, Hao Q, Guo Z R, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate[J]. Chinese Journal of Lasers, 2018, 45(4): 0401010.

钱富琛, 郭政儒, 董文乾, 胡晓蕾, 陈飞, 郝强, 曾和平. 高精度同步飞秒和皮秒脉冲产生技术[J]. 中国激光, 2020, 47(10): 1001001. Qian Fuchen, Guo Zhengru, Dong Wenqian, Hu Xiaolei, Chen Fei, Hao Qiang, Zeng Heping. High-Precision Synchronous Femtosecond and Picosecond Pulse Generation[J]. Chinese Journal of Lasers, 2020, 47(10): 1001001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!