红外与激光工程, 2017, 46 (11): 1103002, 网络出版: 2017-12-26   

超分辨显微技术在活细胞中的应用与发展

Super-resolution microscopy applications and development in living cell
作者单位
天津大学 精密仪器与光电子工程学院, 天津 300072
引用该论文

胡春光, 查日东, 凌秋雨, 何程智, 李奇峰, 胡晓东, 胡小唐. 超分辨显微技术在活细胞中的应用与发展[J]. 红外与激光工程, 2017, 46(11): 1103002.

Hu Chunguang, Zha Ridong, Ling Qiuyu, He Chengzhi, Li Qifeng, Hu Xiaodong, Hu Xiaotang. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 2017, 46(11): 1103002.

参考文献

[1] Minsky M. Microscopy apparatus: US, 3013467[P]. 1961-12-19.

[2] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616): 82-86.

[3] Ash E A, Nicholls G. Super-resolution aperture scanning microscopy [J]. Nature, 1972, 237(5357): 510-512.

[4] Binning G, Rohrer H, Gerber C, et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters, 1982, 49(1): 57-61.

[5] Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence[J]. Journal of Cell Biology, 1981, 89(1): 141-145.

[6] Yildiz A, Forkey J N, Mckinney S A, et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization[J]. Science, 2003, 300(5628): 2061-2065.

[7] Betzig E. Proposed method for molecular optical imaging[J].Optics Letters, 1995, 20(3): 237-239.

[8] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].Science, 2006, 313(5793): 1642-1645.

[9] Rust M, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nature Methods, 2006, 3(10): 793-795.

[10] Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[J]. Proceedings of the National Academy of Sciences of United States of America, 2007, 104(51): 20308-20313.

[11] Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423.

[12] Bates M, Huang B, Dempsey G T. et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1752.

[13] Matsuda A, Shao L, Boulanger J, et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones[J]. Plos one, 2010, 5(9): e12768.

[14] Shtengel G, Galbraith J A, Galbraith C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3125-3130.

[15] Wang Y, Kanchawong P. Three-dimensional super resolution microscopy of factin filaments by interferometric photoactivated localization microscopy[J]. Journal of Visualized Experiments, 2016, 118: e54774.

[16] Kanchanawong P, Shtengel G, Pasapera A M, et al. Nanoscale architecture of integrain-based cell adhesions[J].Nature, 2010, 468(7323): 580-584.

[17] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods,2011, 8(6): 499-505.

[18] Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J].Nature Methods, 2011, 8(4): 279-280.

[19] Babcock H, Sigal Y M, Zhuang X W. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy[J]. Optical Nanoscopy, 2012, 1(1): 1-6.

[20] Huang F, Schwartz S L, Byars J M, et al. Simultaneous multiple-emitteer fitting for single molecule super-resolution imaging[J]. Optic Express, 2011, 2(5): 1377-1394.

[21] Quan T W, Zhu H Y, Long F, et al. High-density localization of fluorescent molecules using Structured Sparse Model and Bayesian Information Criterion[J]. Optic Express, 2011, 19(18): 16974.

[22] Cox S, Rosten E, Monypenny J, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 2012, 9(2): 195-200.

[23] Xu Fan, Zhang Mingshu, He Wenting, et al. Live cell single molecule-guided Bayesian localization super resolution microscopy[J]. Cell Research, 2016, 27(5): 713-716.

[24] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086):935-939.

[25] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.

[26] Vicidomini G, Moneron G, Han K Y, et al. Sharper low-power STED nanoscopy by time gating[J]. Nature Methods, 2011, 8(7): 571-575.

[27] 郝翔, 匡翠方, 顾兆泰, 等.基于时间相关单光子计数的离线式g-STED超分辨显微技术[J]. 中国激光, 2013, 40(1):0104001.

    Hao Xiang, Kuang Cuifang, Gu Zhaotai, et al. Super resolution microscuopy of offline g-STED nanoscopy based on time-correlated single photon counting[J]. Chin J Lasers, 2013, 40(1): 0104001.

[28] Hernandez I C, Castello M, Lanzano L, et al. Two-photon excitation STED microscopy with time-gated detection[J].Scientific Reports, 2016, 6: 19419.

[29] Vicidomini G, Schonie A, Han K Y, et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects[J]. Plos One, 2013, 8(1): e54421.

[30] Vicidomini G, Hernandez I C, Damora M, et al. Gated CW-STED microscopy:A versatile tool for biological nanometer scale investigation[J]. Methods, 2014, 66(2): 124-130.

[31] Hao Xiang, Kuang Cuifang, Li Yanghui, et al. Manipulation of doughnut focal spot by image imverting interferometry[J]. Optics Letters, 2012, 37(5): 821-823.

[32] Stender A S, Marchuk K, Liu C, et al. Single cell optical imaging and spectroscopy[J]. Chemical Reviews, 2013, 113(4): 2469.

[33] Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249.

[34] Bingen P, Reuss M, Engelhardt J, et al. Parallelized STED fluorescence nanoscopy[J]. Optics Express, 2011, 19(24): 23716-23726.

[35] Yang B, Przybilla F, Mestre M. et al. Large parallelization of STED nanoscopy using optical lattices[J]. Optics Express,2014, 22(5): 5581-5589.

[36] Yang B, Fang C Y, Treussart F, et al. Polarization effects in lattice-STED microscopy[J]. Faraday Discussions, 2015, 184: 37-49.

[37] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.

[38] Moneron G, Hell S W. Two-photon excitation STED microscopy[J]. Optics Express, 2009, 17(17): 14567.

[39] Scheul T, D′Amico C, Wang I, et al. Two-photon excitation and stimulated emission depletion by a single wavelength[J]. Optics Express, 2011, 19(19): 18036-18048.

[40] Friedrich M, Gan Q, Ermolayev W, et al. STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution[J]. Biophysical Journal, 2011, 100(8): L43-L45.

[41] Friedrich M, Harms G S. Axial resolution beyond the diffraction limit of a sheet illumination microscope with stimulated emission depletion[J]. Journal of Biomedical Optics, 2015, 20(10): 106006.

[42] Heintzmann R, Cremer C. Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating[C]//SPIE, 1999, 3568: 185-196.

[43] Gustafsson M G L, Agard D A, Sedat J W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination[C]//SPIE, 2000, 3919: 141-150.

[44] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

[45] Shao L, Isaac B, Uzawa S, et al. I5S: wide field light microscopy with 100-nm-scale resolution in three dimensions[J]. Biophysical Journal, 2008, 94(12): 4971-4983.

[46] Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

[47] Ando R, Mizuno H, Miyawaki A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting[J]. Science, 2004, 306(5700): 1370-1373.

[48] Habuchi S, Ando R, Dedecker P, et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 9511-9516.

[49] Habuchi S, Dedecker P, Hotta J, et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching[J]. Photochem & Photobiological Science, 2006, 5(6): 567-576.

[50] Rego E H, Shao L, Macklin J J, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E135-E143.

[51] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

[52] Shao L, Kner P, Rego E H, et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 2011, 8(12): 1044–1046.

[53] York A G, Parekh S H, Dalle Nogare D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7): 749–754.

[54] Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanningmicroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 21000-21005.

[55] York A G, Chandris P, Nogare D D, et al. Instant super-resolution imaging in live cells and embryos via analog image processing[J]. Nature Methods, 2013, 10(11): 1122-1126.

[56] Gao L, Shao L, Chen B C, et al. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocls, 2014, 9(5): 1083-1101.

[57] Chang B J, Meza V D P, Stelzer E H K. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(19): 4869.

[58] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatio-temporal resolution[J]. Science, 2014, 346(6208): 1257998.

[59] Dibg Li, Lin Shao, Chen Bichang, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): 6251.

[60] Legant W R, Shao L, Grimm J B, et al. High-density three-dimensional localization microscopy across large volumes[J]. Nature Methods, 2016, 13(4): 359-365.

胡春光, 查日东, 凌秋雨, 何程智, 李奇峰, 胡晓东, 胡小唐. 超分辨显微技术在活细胞中的应用与发展[J]. 红外与激光工程, 2017, 46(11): 1103002. Hu Chunguang, Zha Ridong, Ling Qiuyu, He Chengzhi, Li Qifeng, Hu Xiaodong, Hu Xiaotang. Super-resolution microscopy applications and development in living cell[J]. Infrared and Laser Engineering, 2017, 46(11): 1103002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!