光学学报, 2019, 39 (12): 1228002, 网络出版: 2019-12-06   

基于二值语义分割网络的遥感建筑物检测 下载: 988次

Remote Sensing Building Detection Based on Binarized Semantic Segmentation
朱天佑 1,2,3董峰 1,2龚惠兴 1,2,*
作者单位
1 中国科学院红外探测与成像技术重点实验室, 上海 200083
2 中国科学院上海技术物理研究所, 上海 200083
3 中国科学院大学, 北京 100049
引用该论文

朱天佑, 董峰, 龚惠兴. 基于二值语义分割网络的遥感建筑物检测[J]. 光学学报, 2019, 39(12): 1228002.

Tianyou Zhu, Feng Dong, Huixing Gong. Remote Sensing Building Detection Based on Binarized Semantic Segmentation[J]. Acta Optica Sinica, 2019, 39(12): 1228002.

参考文献

[1] Hu F, Xia G S, Hu J W, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11): 14680-14707.

[2] VakalopoulouM, KarantzalosK, KomodakisN, et al. Building detection in very high resolution multispectral data with deep learning features[C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE, 2015: 1873- 1876.

[3] 张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11): 1128001.

    Zhang X N, Zhong X, Zhu R F, et al. Scene classification of remote sensing images based on integrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11): 1128001.

[4] Shao W, Yang W, Xia G S. Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification[J]. International Journal of Remote Sensing, 2013, 34(23): 8588-8602.

[5] 刘芳, 路丽霞, 黄光伟, 等. 基于离散余弦变换和深度网络的地貌图像分类[J]. 光学学报, 2018, 38(6): 0620001.

    Liu F, Lu L X, Huang G W, et al. Landform image classification based on discrete cosine transformation and deep network[J]. Acta Optica Sinica, 2018, 38(6): 0620001.

[6] LefèvreS, WeberJ, SheerenD. Automatic building extraction in VHR images using advanced morphological operators[C]∥2007 Urban Remote Sensing Joint Event, April 11-13, 2007, Paris, France. New York: IEEE, 2007: 9702691.

[7] Moser G, Serpico S B, Benediktsson J A. Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images[J]. Proceedings of the IEEE, 2013, 101(3): 631-651.

[8] WangM, Yuan SG, PanJ. Building detection in high resolution satellite urban image using segmentation, corner detection combined with adaptive windowed Hough Transform[C]∥2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, July 21-26, 2013, Melbourne, VIC, Australia. New York: IEEE, 2013: 508- 511.

[9] Benedek C, Descombes X, Zerubia J. Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 33-50.

[10] KrizhevskyA, SutskeverI, Hinton GE. ImageNet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems, December 3-6, 2012, Lake Tahoe, Nevada, United States. USA: NIPS, 2012.

[11] 席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建[J]. 光学学报, 2019, 39(2): 0210003.

    Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 2019, 39(2): 0210003.

[12] 马红强, 马时平, 许悦雷, 等. 基于深度卷积神经网络的低照度图像增强[J]. 光学学报, 2019, 39(2): 0210004.

    Ma H Q, Ma S P, Xu Y L, et al. Low-light image enhancement based on deep convolutional neural network[J]. Acta Optica Sinica, 2019, 39(2): 0210004.

[13] LeCunY, Huang FJ, BottouL. Learning methods for generic object recognition with invariance to pose and lighting[C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., June 27-July 2, 2004. Washington, DC, USA. New York: IEEE, 2004: 8168961.

[14] LongJ, ShelhamerE, DarrellT. Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 3431- 3440.

[15] SzegedyC, LiuW, Jia YQ, et al. Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 15523970.

[16] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770- 778.

[17] SzegedyC, VanhouckeV, IoffeS, et al. Rethinking the inception architecture for computer vision[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 2818- 2826.

[18] RonnebergerO, FischerP, BroxT. U-Net: convolutional networks for biomedical image segmentation[M] ∥Navab N, Hornegger J, Wells W, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science. Cham: Springer, 2015, 9351: 234- 241.

[19] Chen LC, Zhu YK, PapandreouG, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M] ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer, 2018, 11211: 833- 851.

[20] FuJ, LiuJ, Tian HJ, et al. Dual attention network for scene segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 3146- 3154.

[21] Huang ZL, Wang XG, Huang LC, et al. CCNet: criss-cross attention for semantic segmentation[J/OL]. ( 2018-11-28)[2019-05-26]. https:∥arxiv.org/abs/1811. 11721.

[22] Zhang XY, Zhou XY, Lin MX, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 6848- 6856.

[23] Howard AG, Zhu ML, ChenB, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. ( 2017-04-17)[2019-05-26]. https:∥arxiv.org/abs/1704. 04861.

[24] Romera E, Alvarez J M, Bergasa L M, et al. ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 263-272.

[25] PaszkeA, ChaurasiaA, KimS, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J/OL]. ( 2016-06-07)[2019-05-26]. https:∥arxiv.org/abs/1606.02147arXiv.

[26] Ge SM, LuoZ, Zhao SW, et al. Compressing deep neural networks for efficient visual inference[C]∥2017 IEEE International Conference on Multimedia and Expo (ICME), July 10-14, 2017, Hong Kong, China. New York: IEEE, 2017: 667- 672.

[27] HubaraI, CourbariauxM, SoudryD, et al. Binarized neural networks[C]∥Advances in Neural Information Processing Systems, December 5-10, 2016, Barcelona, Spain. USA: NIPS, 2016.

[28] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

[29] WanL, ZeilerM, Zhang SX, et al.Regularization of neural networks using DropConnect[C]∥International Conference on Machine Learning, June 16-21, 2013, Atlanta, GA, United States.USA: MIT Press, 2013, 28( 3): 1058- 1066.

[30] David J P, Kalach K, Tittley N. Hardware complexity of modular multiplication and exponentiation[J]. IEEE Transactions on Computers, 2007, 56(10): 1308-1319.

[31] HanJ, MoragaC. The influence of the sigmoid function parameters on the speed of backpropagation learning[M] ∥Mira J, Sandoval F. From natural to artificial neural computation. IWANN 1995. Lecture notes in computer science. Berlin, Heidelberg: Springer, 1995, 930: 195- 201.

[32] HorowitzM. 1.1 computing's energy problem (and what we can do about it)[C]∥2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), February 9-13, 2014, San Francisco, CA, USA. New York: IEEE, 2014: 10- 14.

朱天佑, 董峰, 龚惠兴. 基于二值语义分割网络的遥感建筑物检测[J]. 光学学报, 2019, 39(12): 1228002. Tianyou Zhu, Feng Dong, Huixing Gong. Remote Sensing Building Detection Based on Binarized Semantic Segmentation[J]. Acta Optica Sinica, 2019, 39(12): 1228002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!