光学学报, 2018, 38 (1): 0124001, 网络出版: 2018-08-31   

基于石墨烯表面等离激元的双支节结构光电调制器 下载: 1108次

Graphene Surface Plasmon Polaritons Based Photoelectric Modulator with Double Branched Structure
作者单位
1 燕山大学电气工程学院, 河北 秦皇岛 066004
2 河北科技师范学院数学与信息科技学院, 河北 秦皇岛 066004
引用该论文

李志全, 冯丹丹, 李欣, 白兰迪, 刘同磊, 岳中, 顾而丹. 基于石墨烯表面等离激元的双支节结构光电调制器[J]. 光学学报, 2018, 38(1): 0124001.

Zhiquan Li, Dandan Feng, Xin Li, Landi Bai, Tonglei Liu, Zhong Yue, Erdan Gu. Graphene Surface Plasmon Polaritons Based Photoelectric Modulator with Double Branched Structure[J]. Acta Optica Sinica, 2018, 38(1): 0124001.

参考文献

[1] Reed GT, ThomsonD, Gardes FY, et al. 40 Gb/s silicon optical modulators[C]. IEEE Photonics Conference, 2011: 737- 738.

    Reed GT, ThomsonD, Gardes FY, et al. 40 Gb/s silicon optical modulators[C]. IEEE Photonics Conference, 2011: 737- 738.

    Reed GT, ThomsonD, Gardes FY, et al. 40 Gb/s silicon optical modulators[C]. IEEE Photonics Conference, 2011: 737- 738.

[2] Luo S Y, Wang Y N, Tong X, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199-209.

    Luo S Y, Wang Y N, Tong X, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199-209.

    Luo S Y, Wang Y N, Tong X, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199-209.

[3] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[4] Wu Y. La-O-Vorakiat C, Qiu X P, et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11): 1874-1879.

    Wu Y. La-O-Vorakiat C, Qiu X P, et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11): 1874-1879.

    Wu Y. La-O-Vorakiat C, Qiu X P, et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11): 1874-1879.

[5] Yang L Z, Hu T, Shen A, et al. Ultracompact optical modulator based on graphene-silica metamaterial[J]. Optics Letters, 2014, 39(7): 1909-1912.

    Yang L Z, Hu T, Shen A, et al. Ultracompact optical modulator based on graphene-silica metamaterial[J]. Optics Letters, 2014, 39(7): 1909-1912.

    Yang L Z, Hu T, Shen A, et al. Ultracompact optical modulator based on graphene-silica metamaterial[J]. Optics Letters, 2014, 39(7): 1909-1912.

[6] . Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.

    . Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.

    . Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.

[7] 杜威. 石墨烯光电子有源器件的研究[D]. 杭州: 浙江大学, 2015.

    杜威. 石墨烯光电子有源器件的研究[D]. 杭州: 浙江大学, 2015.

    杜威. 石墨烯光电子有源器件的研究[D]. 杭州: 浙江大学, 2015.

    DuW. Study of graphene optoelectronic active devices[D]. Hangzhou: Zhejiang University, 2015.

    DuW. Study of graphene optoelectronic active devices[D]. Hangzhou: Zhejiang University, 2015.

    DuW. Study of graphene optoelectronic active devices[D]. Hangzhou: Zhejiang University, 2015.

[8] Yan B, Yang X X, Fang J Y, et al. Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity[J]. Chinese Physics B, 2015, 24(1): 015203.

    Yan B, Yang X X, Fang J Y, et al. Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity[J]. Chinese Physics B, 2015, 24(1): 015203.

    Yan B, Yang X X, Fang J Y, et al. Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity[J]. Chinese Physics B, 2015, 24(1): 015203.

[9] 乔文涛, 龚健, 张利伟, 等. 梳状波导结构中石墨烯表面等离子体的传播性质[J]. 物理学报, 2015, 64(23): 0237301.

    乔文涛, 龚健, 张利伟, 等. 梳状波导结构中石墨烯表面等离子体的传播性质[J]. 物理学报, 2015, 64(23): 0237301.

    乔文涛, 龚健, 张利伟, 等. 梳状波导结构中石墨烯表面等离子体的传播性质[J]. 物理学报, 2015, 64(23): 0237301.

    Qiao W T, Gong J, Zhang L W, et al. Propagation properties of the graphene surface plasmon in comb-like waveguide[J]. Acta Physica Sinica, 2015, 64(23): 0237301.

    Qiao W T, Gong J, Zhang L W, et al. Propagation properties of the graphene surface plasmon in comb-like waveguide[J]. Acta Physica Sinica, 2015, 64(23): 0237301.

    Qiao W T, Gong J, Zhang L W, et al. Propagation properties of the graphene surface plasmon in comb-like waveguide[J]. Acta Physica Sinica, 2015, 64(23): 0237301.

[10] Tao J, Yu X C, Hu B, et al. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J]. Optics Letters, 2014, 39(2): 271-274.

    Tao J, Yu X C, Hu B, et al. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J]. Optics Letters, 2014, 39(2): 271-274.

    Tao J, Yu X C, Hu B, et al. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J]. Optics Letters, 2014, 39(2): 271-274.

[11] Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

    Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

    Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

[12] Kampfrath T, Perfetti L, Schapper F. et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Physical Review Letters, 2005, 95(18): 187403.

    Kampfrath T, Perfetti L, Schapper F. et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Physical Review Letters, 2005, 95(18): 187403.

    Kampfrath T, Perfetti L, Schapper F. et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Physical Review Letters, 2005, 95(18): 187403.

[13] Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

    Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

    Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

[14] Xu C, Jin Y C, Yang L Z. et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J]. Optics Express, 2012, 20(20): 22398-22405.

    Xu C, Jin Y C, Yang L Z. et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J]. Optics Express, 2012, 20(20): 22398-22405.

    Xu C, Jin Y C, Yang L Z. et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J]. Optics Express, 2012, 20(20): 22398-22405.

[15] Midrio M, Boscolo S, Moresco M, et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144-23155.

    Midrio M, Boscolo S, Moresco M, et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144-23155.

    Midrio M, Boscolo S, Moresco M, et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144-23155.

[16] Brownson D A C, Banks C E. The electrochemistry of CVD graphene: Progress and prospects[J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8264-8281.

    Brownson D A C, Banks C E. The electrochemistry of CVD graphene: Progress and prospects[J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8264-8281.

    Brownson D A C, Banks C E. The electrochemistry of CVD graphene: Progress and prospects[J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8264-8281.

[17] Gan CH, HugoninJ-P, LalanneP. Design of an integrated III-V semiconductor single-plasmon source[C]. 2012 Conference on Lasers and Electro-Optics, 2012: 13060545.

    Gan CH, HugoninJ-P, LalanneP. Design of an integrated III-V semiconductor single-plasmon source[C]. 2012 Conference on Lasers and Electro-Optics, 2012: 13060545.

    Gan CH, HugoninJ-P, LalanneP. Design of an integrated III-V semiconductor single-plasmon source[C]. 2012 Conference on Lasers and Electro-Optics, 2012: 13060545.

[18] Jablan M, Buljan H. SoljacicM. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

    Jablan M, Buljan H. SoljacicM. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

    Jablan M, Buljan H. SoljacicM. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

[19] Qian H L, Ma Y G, Yang Q, et al. Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure[J]. ACS Nano, 2014, 8(3): 2584-2589.

    Qian H L, Ma Y G, Yang Q, et al. Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure[J]. ACS Nano, 2014, 8(3): 2584-2589.

    Qian H L, Ma Y G, Yang Q, et al. Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure[J]. ACS Nano, 2014, 8(3): 2584-2589.

[20] Pannipitiya A, Rukhlenko I D, Premaratne M. Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions[J]. IEEE Photonics Journal, 2011, 3(2): 220-233.

    Pannipitiya A, Rukhlenko I D, Premaratne M. Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions[J]. IEEE Photonics Journal, 2011, 3(2): 220-233.

    Pannipitiya A, Rukhlenko I D, Premaratne M. Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions[J]. IEEE Photonics Journal, 2011, 3(2): 220-233.

[21] 刘建龙. 金属-绝缘体-金属波导内表面等离子体传输与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    刘建龙. 金属-绝缘体-金属波导内表面等离子体传输与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    刘建龙. 金属-绝缘体-金属波导内表面等离子体传输与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Liu JL. Surface plasmon transmission and control in metal-insulator-metal waveguides[D]. Harbin: Harbin Institute of Technology, 2010.

    Liu JL. Surface plasmon transmission and control in metal-insulator-metal waveguides[D]. Harbin: Harbin Institute of Technology, 2010.

    Liu JL. Surface plasmon transmission and control in metal-insulator-metal waveguides[D]. Harbin: Harbin Institute of Technology, 2010.

[22] 毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

    毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

    毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

    Bi W H, Li C L, Wang X Y, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

    Bi W H, Li C L, Wang X Y, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

    Bi W H, Li C L, Wang X Y, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

[23] 刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

    Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

    Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

[24] Hao R, Du W, Chen H S. et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

    Hao R, Du W, Chen H S. et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

    Hao R, Du W, Chen H S. et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

李志全, 冯丹丹, 李欣, 白兰迪, 刘同磊, 岳中, 顾而丹. 基于石墨烯表面等离激元的双支节结构光电调制器[J]. 光学学报, 2018, 38(1): 0124001. Zhiquan Li, Dandan Feng, Xin Li, Landi Bai, Tonglei Liu, Zhong Yue, Erdan Gu. Graphene Surface Plasmon Polaritons Based Photoelectric Modulator with Double Branched Structure[J]. Acta Optica Sinica, 2018, 38(1): 0124001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!