Photonics Research, 2020, 8 (11): 11001703, Published Online: Oct. 28, 2020   

Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications Download: 888次

Author Affiliations
1 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
2 Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore 138667, Singapore
3 Institute of Microelectronics, Agency for Science, Technology, and Research (A*STAR), Singapore 138634, Singapore
Copy Citation Text

Xia Yu, Shuyan Zhang, Malini Olivo, Nanxi Li. Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications[J]. Photonics Research, 2020, 8(11): 11001703.

References

[1] C. Jauregui, J. Limpert, A. Tünnermann. High-power fibre lasers. Nat. Photonics, 2013, 7: 861-867.

[2] N. Li, J. Xue, C. Ouyang, K. Wu, J. H. Wong, S. Aditya, P. P. Shum. Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked all-fiber ring laser. Appl. Opt., 2012, 51: 3726-3730.

[3] J. Xue, N. Li, K. Wu, J. H. Wong, C. Ouyang, S. Aditya, P. P. Shum. Performance study and assessment of phase noise suppression by incoherent addition in a mode-locked fiber laser system. Opt. Commun., 2012, 285: 153-157.

[4] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 2012, 6: 423-431.

[5] Y. Liu, K. Wu, N. Li, L. Lan, S. Yoo, X. Wu, P. P. Shum, S. Zeng, X. Tan. Regenerative Er-doped fiber amplifier system for high-repetition-rate optical pulses. J. Opt. Soc. Korea, 2013, 17: 357-361.

[6] N. Li, S. Yoo, X. Yu, D. Jain, J. K. Sahu. Pump power depreciation by photodarkening in ytterbium-doped fibers and amplifiers. IEEE Photonics Technol. Lett., 2014, 26: 115-118.

[7] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, R. Piestun. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 2018, 12: 368-374.

[8] J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, P. P. Shum. Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs. J. Lightwave Technol., 2012, 30: 3164-3172.

[9] J. E. Betancur-Ochoa, V. P. Minkovich, Y. J. Montagut-Ferizzola. Special photonic crystal modal interferometer for highly sensitive biosensing. J. Lightwave Technol., 2017, 35: 4747-4751.

[10] J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, A. Bjarklev. Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express, 2005, 13: 5883-5889.

[11] J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, H. Zhang. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater., 2017, 5: 1700026.

[12] X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, H. Zhang. Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater., 2018, 6: 1800561.

[13] F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, A. Iadicicco. Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer. Sens. Actuators B, 2018, 274: 517-526.

[14] R. Ravikumar, L. H. Chen, P. Jayaraman, C. L. Poh, C. C. Chan. Chitosan-nickel film based interferometric optical fiber sensor for label-free detection of histidine tagged proteins. Biosens. Bioelectron., 2018, 99: 578-585.

[15] ZheltikovA. M., “Microstructure fibers in biophotonics,” in Handbook of Biophotonics (Wiley, 2013), Chap. 4.

[16] H. Tu, S. A. Boppart. Coherent fiber supercontinuum for biophotonics. Laser Photonics Rev., 2013, 7: 628-645.

[17] E. S. Boyden. Optogenetics and the future of neuroscience. Nat. Neurosci., 2015, 18: 1200-1201.

[18] V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, K. Deisseroth. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci., 2007, 27: 14231-14238.

[19] F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, A. Giannetti. Biosensing with optical fiber gratings. Nanophotonics, 2017, 6: 663-679.

[20] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 2015, 407: 3883-3897.

[21] P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, A. Cusano. Lab on fiber technology for biological sensing applications. Laser Photonics Rev., 2016, 10: 922-961.

[22] A. B. Socorro-Leránoz, D. Santano, I. Del Villar, I. R. Matias. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens. Bioelectron.: X, 2019, 1: 100015.

[23] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer. Fiber-optic fluorescence imaging. Nat. Methods, 2005, 2: 941-950.

[24] G. Keiser, F. Xiong, Y. Cui, P. P. Shum. Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt., 2014, 19: 080902.

[25] J. Li, H. Ebendorff-Heidepriem, B. C. Gibson, A. D. Greentree, M. R. Hutchinson, P. Jia, R. Kostecki, G. Liu, A. Orth, M. Ploschner, E. P. Schartner, S. C. Warren-Smith, K. Zhang, G. Tsiminis, E. M. Goldys. Perspective: biomedical sensing and imaging with optical fibers—Innovation through convergence of science disciplines. APL Photonics, 2018, 3: 100902.

[26] J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, K.-S. Lee. Fiber-optic waveguide coupled surface plasmon resonance sensor. Opt. Express, 2012, 20: 21729-21738.

[27] H.-Y. Lin, Y.-C. Tsao, W.-H. Tsai, Y.-W. Yang, T.-R. Yan, B.-C. Sheu. Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sens. Actuators A, 2007, 138: 299-305.

[28] PolletJ.DelportF.ThiD. T.WeversM.LammertynJ., “Aptamer-based surface plasmon resonance probe,” in Sensors (IEEE, 2008), pp. 11871190.

[29] M. Kanso, S. Cuenot, G. Louarn. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics, 2008, 3: 49-57.

[30] Y. S. Dwivedi, A. K. Sharma, B. D. Gupta. Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor. Plasmonics, 2008, 3: 79-86.

[31] R. Slavík, J. Homola, E. Brynda. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens. Bioelectron., 2002, 17: 591-595.

[32] S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, Y. Wang. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express, 2018, 26: 3988-3994.

[33] N. M. Y. Zhang, K. Li, P. P. Shum, X. Yu, S. Zeng, Z. Wu, Q. J. Wang, K. T. Yong, L. Wei. Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol., 2017, 2: 1600185.

[34] X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, D. Liu. Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber. Sens. Actuators B, 2011, 160: 196-201.

[35] M.-C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban. Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sens. Actuators B, 2014, 190: 881-885.

[36] Ó. Esteban, F. B. Naranjo, N. Díaz-Herrera, S. Valdueza-Felip, M.-C. Navarrete, A. González-Cano. High-sensitive SPR sensing with indium nitride as a dielectric overlay of optical fibers. Sens. Actuators B, 2011, 158: 372-376.

[37] T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, H. Bartelt. Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance. Plasmonics, 2013, 8: 545-554.

[38] R. K. Verma, A. K. Sharma, B. D. Gupta. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt. Commun., 2008, 281: 1486-1491.

[39] N. M. Y. Zhang, K. Li, T. Zhang, P. Shum, Z. Wang, Z. Wang, N. Zhang, J. Zhang, T. Wu, L. Wei. Electron-rich two-dimensional molybdenum trioxides for highly integrated plasmonic biosensing. ACS Photonics, 2018, 5: 347-352.

[40] X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, C. Li. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt., 2009, 12: 015005.

[41] Y. Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, Y. Zhang. Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. Opt. Commun., 2011, 284: 4161-4166.

[42] Y. Zhang, C. Zhou, L. Xia, X. Yu, D. Liu. Wagon wheel fiber based multichannel plasmonic sensor. Opt. Express, 2011, 19: 22863-22873.

[43] N. M. Y. Zhang, D. J. J. Hu, P. P. Shum, Z. Wu, K. Li, T. Huang, L. Wei. Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. J. Opt., 2016, 18: 065005.

[44] B. Lee, J.-H. Park, J.-Y. Byun, J. H. Kim, M.-G. Kim. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A. Biosens. Bioelectron., 2018, 102: 504-509.

[45] H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee, S.-K. Lee. Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens. Bioelectron., 2013, 39: 346-351.

[46] H.-H. Jeong, S.-K. Lee, J.-H. Park, N. Erdene, D.-H. Jeong. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma. Opt. Eng., 2011, 50: 124405.

[47] S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, Y.-B. Shin. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano, 2011, 5: 897-904.

[48] M. Sanders, Y. Lin, J. Wei, T. Bono, R. G. Lindquist. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens. Bioelectron., 2014, 61: 95-101.

[49] S. Kumar, B. K. Kaushik, R. Singh, N.-K. Chen, Q. S. Yang, X. Zhang, W. Wang, B. Zhang. LSPR-based cholesterol biosensor using a tapered optical fiber structure. Biomed. Opt. Express, 2019, 10: 2150-2160.

[50] N. M. Y. Zhang, M. Qi, Z. Wang, Z. Wang, M. Chen, K. Li, P. Shum, L. Wei. One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sens. Actuators B, 2019, 286: 429-436.

[51] M. Marciniak, J. Grzegorzewski, M. Szustakowski. Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. IEE Proc. J. Optoelectronics, 1993, 140: 247-252.

[52] F. Chiavaioli, P. Zubiate, I. Del Villar, C. R. Zamarreño, A. Giannetti, S. Tombelli, C. Trono, F. J. Arregui, I. R. Matias, F. Baldini. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens., 2018, 3: 936-943.

[53] Q. Wang, B.-T. Wang. Surface plasmon resonance biosensor based on graphene oxide/silver coated polymer cladding silica fiber. Sens. Actuators B, 2018, 275: 332-338.

[54] P. Zubiate, C. R. Zamarreño, P. Sánchez, I. R. Matias, F. J. Arregui. High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens. Bioelectron., 2017, 93: 176-181.

[55] U. S. Dinish, F. Beffara, G. Humbert, J.-L. Auguste, M. Olivo. Surface-enhanced Raman scattering-active photonic crystal fiber probe: towards next generation liquid biopsy sensor with ultra high sensitivity. J. Biophotonics, 2019, 12: e201900027.

[56] H. Ko, S. Singamaneni, V. V. Tsukruk. Nanostructured surfaces and assemblies as SERS media. Small, 2008, 4: 1576-1599.

[57] M. Moskovits. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc., 2005, 36: 485-496.

[58] J. P. Camden, J. A. Dieringer, J. Zhao, R. P. Van Duyne. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res., 2008, 41: 1653-1661.

[59] T. Gong, Y. Cui, D. Goh, K. K. Voon, P. P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, M. Olivo. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosens. Bioelectron., 2015, 64: 227-233.

[60] U. S. Dinish, C. Y. Fu, K. S. Soh, B. Ramaswamy, A. Kumar, M. Olivo. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron., 2012, 33: 293-298.

[61] A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, H. Anis. Hollow core photonic crystal fiber as a reusable Raman biosensor. Opt. Express, 2013, 21: 12340-12350.

[62] A. Khetani, A. Momenpour, E. I. Alarcon, H. Anis. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). Biomed. Opt. Express, 2015, 6: 4599-4609.

[63] Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, H. Du. Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers. Adv. Mater., 2010, 22: 2647-2651.

[64] C. Liu, S. Wang, G. Chen, S. Xu, Q. Jia, J. Zhou, W. Xu. A surface-enhanced Raman scattering (SERS)-active optical fiber sensor based on a three-dimensional sensing layer. Sens. Bio-Sens. Res., 2014, 1: 8-14.

[65] X. Yang, C. Gu, F. Qian, Y. Li, J. Z. Zhang. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem., 2011, 83: 5888-5894.

[66] F. Eftekhari, A. Lee, E. Kumacheva, A. S. Helmy. Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS. Opt. Lett., 2012, 37: 680-682.

[67] V. S. Tiwari, A. Khetani, A. Momenpour, H. Anis. Optimum size and volume of nanoparticles within hollow core photonic crystal fiber. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 205-212.

[68] N. Zhang, G. Humbert, T. Gong, P. P. Shum, K. Li, J.-L. Auguste, Z. Wu, D. J. J. Hu, F. Luan, Q. X. Dinh, M. Olivo, L. Wei. Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators, B, 2016, 223: 195-201.

[69] T. Gong, N. Zhang, K. V. Kong, D. Goh, C. Ying, J.-L. Auguste, P. P. Shum, L. Wei, G. Humbert, K.-T. Yong, M. Olivo. Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor. J. Biophotonics, 2016, 9: 32-37.

[70] T. B. Pham, T. H. C. Hoang, V. H. Pham, V. C. Nguyen, T. V. Nguyen, D. C. Vu, V. H. Pham, H. Bui. Detection of Permethrin pesticide using silver nano-dendrites SERS on optical fibre fabricated by laser-assisted photochemical method. Sci. Rep., 2019, 9: 12590.

[71] J. Cao, D. Zhao, Q. Mao. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper. Analyst, 2017, 142: 596-602.

[72] L. Li, S. Deng, H. Wang, R. Zhang, K. Zhu, Y. Lu, Z. Wang, S. Zong, Z. Wang, Y. Cui. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing. Nanotechnology, 2019, 30: 255503.

[73] J. Guo, Y. Luo, C. Yang, L. Kong. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes. Opt. Lett., 2018, 43: 5443-5446.

[74] H. Zhou, J. Liu, H. Liu, Z. Zheng. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber. Appl. Opt., 2018, 57: 7931-7937.

[75] C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, J. Z. Zhang. Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering. Appl. Phys. Lett., 2008, 93: 153101.

[76] P. Pinkhasova, H. Chen, J. Kanka, P. Mergo, H. Du. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform. Appl. Phys. Lett., 2015, 106: 071106.

[77] H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, L. Hou. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt. Express, 2008, 16: 8300-8305.

[78] A. Amezcua-Correa, J. Yang, C. E. Finlayson, A. C. Peacock, J. R. Hayes, P. J. A. Sazio, J. J. Baumberg, S. M. Howdle. Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv. Funct. Mater., 2007, 17: 2024-2030.

[79] Y. Zhang, D. Yong, X. Yu, L. Xia, D. Liu, Y. Zhang. Amplification of surface-enhanced Raman scattering in photonic crystal fiber using offset launch method. Plasmonics, 2013, 8: 209-215.

[80] X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, C. Gu. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J. Opt. Soc. Am. A, 2010, 27: 977-984.

[81] L. Sirleto, A. Vergara, M. A. Ferrara. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photonics, 2017, 9: 169-217.

[82] S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, C. López. Resonance-driven random lasing. Nat. Photonics, 2008, 2: 429-432.

[83] W. H. Bragg, W. L. Bragg. The reflection of X-rays by crystals. Proc. R. Soc. London Ser. A, 1913, 88: 428-438.

[84] S. Sridevi, K. S. Vasu, S. Asokan, A. K. Sood. Sensitive detection of C-reactive protein using optical fiber Bragg gratings. Biosens. Bioelectron., 2015, 65: 251-256.

[85] J. Albert, L.-Y. Shao, C. Caucheteur. Tilted fiber Bragg grating sensors. Laser Photonics Rev., 2013, 7: 83-108.

[86] P. Biswas, F. Chiavaioli, S. Jana, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, A. Mallick, F. Baldini, S. Bandyopadhyay. Design, fabrication and characterisation of silica-titania thin film coated over coupled long period fibre gratings: towards bio-sensing applications. Sens. Actuators B, 2017, 253: 418-427.

[87] X. Yu, P. Shum, G. B. Ren. Highly sensitive photonic crystal fiber-based refractive index sensing using mechanical long-period grating. IEEE Photonics Technol. Lett., 2008, 20: 1688-1690.

[88] N. M. Y. Zhang, X. Dong, P. P. Shum, D. J. J. Hu, H. Su, W. S. Lew, L. Wei. Magnetic field sensor based on magnetic-fluid-coated long-period fiber grating. J. Opt., 2015, 17: 065402.

[89] J. Li, H. Qu, M. Skorobogatiy. Squeezed hollow-core photonic Bragg fiber for surface sensing applications. Opt. Express, 2016, 24: 15687-15701.

[90] J. Li, K. Nallappan. Optimization of hollow-core photonic Bragg fibers towards practical sensing implementations. Opt. Mater. Express, 2019, 9: 1640-1653.

[91] D. Yong, X. Yu, G. Ren, H. Zhang, Y. Zhang, C. C. Chan, H. Wei, W. Tong. Photonic bandgap fiber for infiltration-free refractive-index sensing. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 1560-1565.

[92] Y. Cardona-Maya, A. B. Socorro, I. Del Villar, J. L. Cruz, J. M. Corres, J. F. Botero-Cadavid. Label-free wavelength and phase detection based SMS fiber immunosensors optimized with cladding etching. Sens. Actuators B, 2018, 265: 10-19.

[93] A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, I. R. Matias. Sensitivity enhancement in a multimode interference-based SMS fibre structure coated with a thin-film: theoretical and experimental study. Sens. Actuators B, 2014, 190: 363-369.

[94] Y. Cardona-Maya, I. Del Villar, A. B. Socorro, J. M. Corres, I. R. Matias, J. F. Botero-Cadavid. Wavelength and phase detection based SMS fiber sensors optimized with etching and nanodeposition. J. Lightwave Technol., 2017, 35: 3743-3749.

[95] Q. Wu, Y. Semenova, P. Wang, G. Farrell. High sensitivity SMS fiber structure based refractometer–analysis and experiment. Opt. Express, 2011, 19: 7937-7944.

[96] B.-T. Wang, Q. Wang. An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing. Opt. Commun., 2018, 426: 388-394.

[97] D. Luna-Moreno, D. Monzón-Hernández, J. Villatoro, G. Badenes. Optical fiber hydrogen sensor based on core diameter mismatch and annealed Pd-Au thin films. Sens. Actuators B, 2007, 125: 66-71.

[98] D. Sun, Y. Ran, G. Wang. Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating. Sensors, 2017, 17: 2559.

[99] T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, M. A. Mahdi. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express, 2014, 22: 22802-22807.

[100] R. Srinivasan, S. Umesh, S. Murali, S. Asokan, S. S. Gorthi. Bare fiber Bragg grating immunosensor for real-time detection of Escherichia coli bacteria. J. Biophotonics, 2017, 10: 224-230.

[101] Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, W. Peng. A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein. Sensors, 2017, 17: 2259.

[102] C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, C. Caucheteur. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis. Biosens. Bioelectron., 2017, 92: 449-456.

[103] J.-H. Chen, J.-R. Zhao, X.-G. Huang, Z.-J. Huang. Extrinsic fiber-optic Fabry–Perot interferometer sensor for refractive index measurement of optical glass. Appl. Opt., 2010, 49: 5592-5596.

[104] S. Novais, M. S. Ferreira, J. L. Pinto. Optical fiber Fabry-Perot tip sensor for detection of water-glycerin mixtures. J. Lightwave Technol., 2018, 36: 1576-1582.

[105] M. F. Domingues, C. A. Rodriguez, J. Martins, C. Tavares, C. Marques, N. Alberto, P. André, P. Antunes. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities. Opt. Fiber Technol., 2018, 42: 56-62.

[106] L. H. Chen, X. M. Ang, C. C. Chan, M. Shaillender, B. Neu, W. C. Wong, P. Zu, K. C. Leong. Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based Fabry-Perot interferometric fiber optic biosensor. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 1457-1464.

[107] J. Wallner, G. Lhota, D. Jeschek, A. Mader, K. Vorauer-Uhl. Application of bio-layer interferometry for the analysis of protein/liposome interactions. J. Pharm. Biomed. Anal., 2013, 72: 150-154.

[108] L. V. Doronina-Amitonova, I. V. Fedotov, O. I. Ivashkina, M. A. Zots, A. B. Fedotov, K. V. Anokhin, A. M. Zheltikov. Fiber-optic probes for in vivo depth-resolved neuron-activity mapping. J. Biophotonics, 2010, 3: 660-669.

[109] S. Ishida, N. Nishizawa, T. Ohta, K. Itoh. Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples. Appl. Phys. Express, 2011, 4: 052501.

[110] S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, B. H. Lee. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography. Appl. Opt., 2008, 47: 1510-1516.

[111] M. Zhao, Y. Huang, J. U. Kang. Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging. Opt. Lett., 2012, 37: 4835-4837.

[112] H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. W. Qiu, F. Capasso, M. J. Suter. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 2018, 12: 540-547.

[113] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[114] L. Fu, A. Jain, H. Xie, C. Cranfield, M. Gu. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. Opt. Express, 2006, 14: 1027-1032.

[115] L. Fu, A. Jain, C. Cranfield, H. Xie, M. Gu. Three-dimensional nonlinear optical endoscopy. J. Biomed. Opt., 2007, 12: 040501.

[116] M. Balu, G. Liu, Z. Chen, B. J. Tromberg, E. O. Potma. Fiber delivered probe for efficient CARS imaging of tissues. Opt. Express, 2010, 18: 2380-2388.

[117] W. Jung, S. Tang, T. Xie, D. T. McCormick, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, Z. Chen. Miniaturized probe using 2 axis MEMS scanner for endoscopic multiphoton excitation microscopy. Proc. SPIE, 2008, 6851: 68510D.

[118] R. Le Harzic, I. Riemann, M. Weinigel, K. König, B. Messerschmidt. Rigid and high-numerical-aperture two-photon fluorescence endoscope. Appl. Opt., 2009, 48: 3396-3400.

[119] M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell. Enhanced two-photon biosensing with double-clad photonic crystal fibers. Opt. Lett., 2003, 28: 1224-1226.

[120] I. V. Fedotov, A. B. Fedotov, L. V. Doronina, A. M. Zheltikov. Enhancement of guided-wave two-photon-excited luminescence response with a photonic-crystal fiber. Appl. Opt., 2009, 48: 5274-5279.

[121] V. P. Mitrokhin, A. B. Fedotov, A. A. Ivanov, M. V. Alfimov, A. M. Zheltikov. Coherent anti-Stokes Raman scattering microspectroscopy of silicon components with a photonic-crystal fiber frequency shifter. Opt. Lett., 2007, 32: 3471-3473.

[122] A. D. Savvin, A. A. Lanin, A. A. Voronin, A. B. Fedotov, A. M. Zheltikov. Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers. Opt. Lett., 2010, 35: 919-921.

[123] J. S. Paiva, P. A. S. Jorge, C. C. Rosa, J. P. S. Cunha. Optical fiber tips for biological applications: from light confinement, biosensing to bioparticles manipulation. Biochim. Biophys. Acta, 2018, 1862: 1209-1246.

[124] G. Longo, M. Girasole, G. Pompeo, R. Generosi, M. Luce, A. Cricenti. A multipurpose hybrid conventional/scanning near-field optical microscope for applications in materials science and biology. Meas. Sci. Technol., 2010, 21: 045502.

[125] V. Dalal, M. Bhattacharya, D. Narang, P. K. Sharma, S. Mukhopadhyay. Nanoscale fluorescence imaging of single amyloid fibrils. J. Phys. Chem. Lett., 2012, 3: 1783-1787.

[126] Y. Li, X. Liu, B. Li. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci. Appl., 2019, 8: 61.

[127] S.-L. Chen. Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging. Appl. Sci., 2016, 7: 25.

[128] Y. Tian, N. Wu, X. Zou, H. Felemban, C. Cao, X. Wang. Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam. Opt. Eng., 2013, 52: 065005.

[129] R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, A. E. Desjardins. Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett., 2014, 104: 173502.

[130] M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark, E. Z. Zhang, S. Ourselin, P. C. Beard, R. J. Schillin, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light Sci. Appl., 2017, 6: e17103.

[131] E. Z. Zhang, P. C. Beard. A miniature all-optical photoacoustic imaging probe. Proc. SPIE, 2011, 7899: 78991F.

[132] N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, I. Bennion. Medical ultrasound detection using fiber Bragg gratings. Proc. SPIE, 1999, 3541: 27-32.

[133] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, P. C. Beard. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 2017, 11: 714-719.

[134] R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, A. E. Desjardins. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomed. Opt. Express, 2015, 6: 1502-1511.

[135] BiagiE.CerbaiS.MasottiL.BelsitoL.RoncagliaA.MasettiG.SpecialeN., “Fiber optic broadband ultrasonic probe for virtual biopsy: technological solutions,” in IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 200203.

[136] Y. Miida, Y. Matsuura. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle. Opt. Express, 2013, 21: 22023-22033.

[137] G. Balasundaram, L. Ding, X. Li, A. B. E. Attia, X. L. Dean-Ben, C. J. H. Ho, P. Chandrasekharan, H. C. Tay, H. Q. Lim, C. B. Ong, R. P. Mason, D. Razansky, M. Olivo. Noninvasive anatomical and functional imaging of orthotopic glioblastoma development and therapy using multispectral optoacoustic tomography. Transl. Oncol., 2018, 11: 1251-1258.

[138] R. Bi, G. Balasundaram, S. Jeon, H. C. Tay, Y. Pu, X. Li, M. Moothanchery, C. Kim, M. Olivo. Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma. J. Biophotonics, 2018, 11: e201700327.

[139] G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, V. Ntziachristos. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res., 2017, 23: 6912-6922.

[140] Y. Goh, G. Balasundaram, M. Moothanchery, A. Attia, X. Li, H. Q. Lim, N. Burton, Y. Qiu, T. C. Putti, C. W. Chan, P. Iau, S. W. Tang, C. W. Q. Ng, F. J. Pool, P. Pillay, W. Chua, E. Sterling, S. T. Quek, M. Olivo. Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: a first-in-human case study. Clin. Breast Cancer, 2018, 18: e1247-e1250.

[141] A. B. E. Attia, S. Y. Chuah, D. Razansky, C. J. H. Ho, P. Malempati, U. S. Dinish, R. Bi, C. Y. Fu, S. J. Ford, J. S.-S. Lee, M. W. P. Tan, M. Olivo, S. T. G. Thng. Noninvasive real-time characterization of non-melanoma skin cancers with handheld optoacoustic probes. Photoacoustics, 2017, 7: 20-26.

[142] J. Aguirre, M. Schwarz, N. Garzorz, M. Omar, A. Buehler, K. Eyerich, V. Ntziachristos. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng., 2017, 1: 0068.

[143] D. R. Sparta, A. M. Stamatakis, J. L. Phillips, N. Hovelsø, R. van Zessen, G. D. Stuber. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc., 2012, 7: 12-23.

[144] SongY.-K.PattersonW. R.BullC. W.ZhangJ.SheldonC. R.NurmikkoA. V.SteinJ. J.SerruyaM. D.DonoghueJ. P., “Fiber optic guided functional electrical stimulation with microscale photovoltaic neurostimulator devices,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuEE4.

[145] LeeB.JinJ.ParkJ.KimJ., “Flexible neural probe integrated microchannel and optical fiber for multifle stimulation,” in Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) (2013), pp. 321324.

[146] A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 2015, 33: 277-284.

[147] Y. Shin, M. Yoo, H.-S. Kim, S.-K. Nam, H.-I. Kim, S.-K. Lee, S. Kim, H.-S. Kwon. Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. Biomed. Opt. Express, 2016, 7: 4450-4471.

[148] X. Tan, S. Rajguru, H. Young, N. Xia, S. R. Stock, X. Xiao, C.-P. Richter. Radiant energy required for infrared neural stimulation. Sci. Rep., 2015, 5: 13273.

[149] R. Pashaie, R. Falk. Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans. Biomed. Eng., 2013, 60: 268-280.

[150] K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, M. J. Suter. Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance. Biomed. Opt. Express, 2012, 3: 1947-1954.

[151] S. Tamaki, T. Kuki, T. Matsunaga, H. Mushiake, Y. Furusawa, Y. Haga. Flexible tube-shaped neural probe for recording and optical stimulation of neurons at arbitrary depths. Sens. Mater., 2015, 27: 507-523.

[152] F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, B. L. Sabatini. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci., 2017, 20: 1180-1188.

[153] PisanelloM.PisanoF.SileoL.MaglieE.BellistriE.SpagnoloB.MandelbaumG.SabatiniB. L.De VittorioM.PisanelloF., “Exploiting modal demultiplexing properties of tapered optical fibers for tailored optogenetic stimulation,” bioRxiv 199273 (2017).

[154] N. Vogt. Tailoring optogenetic illumination through tapered fibers. Nat. Methods, 2017, 14: 763.

[155] M. S. Akselrod, L. Bøtter-Jensen, S. W. S. McKeever. Optically stimulated luminescence and its use in medical dosimetry. Radiat. Meas., 2006, 41: S78-S99.

[156] F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, M. De Vittorio. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron, 2014, 82: 1245-1254.

[157] T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, F. Solzbacher. Characterization of a 3D optrode array for infrared neural stimulation. Biomed. Opt. Express, 2012, 3: 2200-2219.

[158] WuF., “Implantable neural probes for electrical recording and optical stimulation of cellular level neural circuitry in behaving animals,” Ph.D. thesis (University of Michigan, 2015).

[159] A. Torricelli, D. Contini, A. Dalla Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, L. Spinelli. Neurophotonics: non-invasive optical techniques for monitoring brain functions. Funct. Neurol., 2014, 29: 223-230.

[160] Y. K. Cho, G. Zheng, G. J. Augustine, D. Hochbaum, A. Cohen, T. Knöpfel, F. Pisanello, F. S. Pavone, I. M. Vellekoop, M. J. Booth, S. Hu, J. Zhu, Z. Chen, Y. Hoshi. Roadmap on neurophotonics. J. Opt., 2016, 18: 093007.

[161] M. R. Warden, J. A. Cardin, K. Deisseroth. Optical neural interfaces. Annu. Rev. Biomed. Eng., 2014, 16: 103-129.

[162] A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, V. N. Astratov. Contact focusing multimodal microprobes for ultraprecise laser tissue surgery. Opt. Express, 2011, 19: 3440-3448.

[163] S. K. Mohanty, K. S. Mohanty, M. W. Berns. Manipulation of mammalian cells using a single-fiber optical microbeam. J. Biomed. Opt., 2008, 13: 054049.

[164] TozburunS., “Optical stimulation of the prostate nerves: a potential diagnostic technique,” Ph.D. thesis (The University of North Carolina at Charlotte, 2012).

[165] K. Dhakal, L. Gu, B. Black, S. K. Mohanty. Fiber-optic two-photon optogenetic stimulation. Opt. Lett., 2013, 38: 1927-1929.

[166] M. Kim, J. Hong, J. Kim, H. Shin. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. Biomed. Opt. Express, 2017, 8: 2781-2795.

[167] A. Klimas, E. Entcheva. Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective. J. Biomed. Opt., 2014, 19: 080701.

[168] I. Nishidate, C. Mizushima, K. Yoshida, S. Kawauchi, S. Sato, M. Sato. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression. J. Biomed. Opt., 2015, 20: 027003.

[169] B. Chocarro-Ruiz, J. Pérez-Carvajal, C. Avci, O. Calvo-Lozano, M. I. Alonso, D. Maspoch, L. M. Lechuga. A CO2 optical sensor based on self-assembled metal-organic framework nanoparticles. J. Mater. Chem. A, 2018, 6: 13171-13177.

[170] H. Yuan, J. Tao, N. Li, A. Karmakar, C. Tang, H. Cai, S. J. Pennycook, N. Singh, D. Zhao. On-chip tailorability of capacitive gas sensors integrated with metal–organic framework films. Angew. Chem. Int. Ed., 2019, 58: 14089-14094.

[171] J. Wu, M. Yin, K. Seefeldt, A. Dani, R. Guterman, J. Yuan, A. P. Zhang, H.-Y. Tam. In situ μ-printed optical fiber-tip CO2 sensor using a photocrosslinkable poly(ionic liquid). Sens. Actuators B, 2018, 259: 833-839.

[172] H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang, A. Karmakar, J. Yuan, M. Li, P. J. S. Buenconsejo, G. Liu, H. Cai, S. J. Pennycook, N. Singh, D. Zhao. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens., 2020, 5: 1474-1481.

[173] S. Kanaparthi, S. G. Singh. Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection. ACS Appl. Nano Mater., 2019, 2: 700-706.

[174] M. R. Tchalala, Y. Belmabkhout, K. Adil, K. N. Chappanda, A. Cadiau, P. M. Bhatt, K. N. Salama, M. Eddaoudi. Concurrent sensing of CO2 and H2O from air using ultramicroporous fluorinated metal-organic frameworks: effect of transduction mechanism on the sensing performance. ACS Appl. Mater. Interfaces, 2019, 11: 1706-1712.

[175] N. Li, H. Yuan, L. Xu, J. Tao, D. K. T. Ng, L. Y. T. Lee, D. D. Cheam, Y. Zeng, B. Qiang, Q. Wang, H. Cai, N. Singh, D. Zhao. Radiation enhancement by graphene oxide on microelectromechanical system emitters for highly selective gas sensing. ACS Sens., 2019, 4: 2746-2753.

[176] J. Zhou, G. Tian, L. Zeng, X. Song, X. Bian. Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv. Healthcare Mater., 2018, 7: 1800022.

[177] S. E. Miller, M. H. Teplensky, P. Z. Moghadam, D. Fairen-Jimenez. Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus, 2016, 6: 20160027.

[178] X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, S. Chen. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev., 2019, 48: 5266-5302.

[179] F. Galeotti, M. Pisco, A. Cusano. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation ‘lab-on-fiber’ optrodes. Nanoscale, 2018, 10: 22673-22700.

[180] M. Principe, M. Consales, A. Micco, A. Crescitelli, G. Castaldi, E. Esposito, V. La Ferrara, A. Cutolo, V. Galdi, A. Cusano. Optical fiber meta-tips. Light Sci. Appl., 2017, 6: e16226.

[181] J. Yang, I. Ghimire, P. C. Wu, S. Gurung, C. Arndt, D. P. Tsai, H. W. H. Lee. Photonic crystal fiber metalens. Nanophotonics, 2019, 8: 443-449.

[182] S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, K. Oh. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation. Appl. Phys. Lett., 2011, 98: 241103.

[183] H. Lin, M.-C. Kao, C.-M. Lai, J.-C. Huang, W.-C. Kuo. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography. J. Biomed. Opt., 2013, 19: 021110.

[184] X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, A. M. Rollins. Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring. Opt. Lett., 2014, 39: 5066-5069.

[185] G. S. D. Gordon, J. Joseph, T. Sawyer, A. J. Macfaden, C. Williams, T. D. Wilkinson, S. E. Bohndiek. Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle. Opt. Express, 2019, 27: 23929-23947.

[186] K. Schulz, E. Sydekum, R. Krueppel, C. J. Engelbrecht, F. Schlegel, A. Schröter, M. Rudin, F. Helmchen. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods, 2012, 9: 597-602.

[187] Z. Liang, Y. Ma, G. D. R. Watson, N. Zhang. Simultaneous GCaMP6-based fiber photometry and fMRI in rats. J. Neurosci. Methods, 2017, 289: 31-38.

Xia Yu, Shuyan Zhang, Malini Olivo, Nanxi Li. Micro- and nano-fiber probes for optical sensing, imaging, and stimulation in biomedical applications[J]. Photonics Research, 2020, 8(11): 11001703.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!