Frontiers of Optoelectronics, 2016, 9 (3): 518, 网络出版: 2016-11-23  

Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications

Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications
作者单位
1 State Key Laboratory of Optoelectronic Materials and Technologies and School of Microelectronics, Sun Yatsen University,Guangzhou 510275, China
2 Institute of Photonics, University of Strathclyde, Glasgow G4 0NW, UK
3 School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
引用该论文

Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Frontiers of Optoelectronics, 2016, 9(3): 518.

Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Frontiers of Optoelectronics, 2016, 9(3): 518.

参考文献

[1] Beth R A. Mechanical detection and measurement of the angular momentum of light. Physical Review, 1936, 50(2): 115–125

[2] Friese M E J, Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 1998, 394(6691): 348–350

[3] Humblet J. Sur le moment d’impulsion d’une onde electromagntique. Physica A, 1943, 10(7): 585–603

[4] Allen L, BeijersbergenMW, Spreeuw R J C,Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre- Gaussian laser modes. Physical Review A., 1992, 45(11): 8185– 8189

[5] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, 112(5–6): 321–327

[6] Bazhenov V Y, Vasnetsov M V, Soskin M S. Laser-beams with screw dislocations in their wavefronts. JETP Letters, 1990, 52(8): 429–431

[7] Oemrawsingh S S R, van Houwelingen J A W, Eliel E R,Woerdman J P, Verstegen E J, Kloosterboer J G, ’t Hooft G W. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 2004, 43(3): 688–694

[8] He H, FrieseME J, Heckenberg N R, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 1995, 75(5): 826–829

[9] O’Neil A T, MacVicar I, Allen L, PadgettMJ. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 2002, 88(5): 053601

[10] Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914

[11] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456

[12] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 2005, 94(15): 153901–153904

[13] Marrucci L, Manzo C, Paparo D. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation. Applied Physics Letters, 2006, 88(22): 221102

[14] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(1): 225–230

[15] McGloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam. Applied Optics, 1998, 37(3): 469–472

[16] Kumar R, Singh Mehta D, Sachdeva A, Garg A, Senthilkumaran P, Shakher C. Generation and detection of optical vortices using all fiber-optic system. Optics Communications, 2008, 281(13): 3414– 3420

[17] Barreiro J T,Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding. Nature Physics, 2008, 4(4): 282–286

[18] Mair A, Vaziri A,Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316

[19] Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Physical Review Letters, 2002, 88(1): 013601

[20] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, threedimensional entanglement for quantum communication. Physical Review Letters, 2002, 89(24): 240401

[21] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 2002, 88(25 Pt 1): 257901

[22] Barreiro J T, Langford N K, Peters N A, Kwiat P G. Generation of hyperentangled photon pairs. Physical Review Letters, 2005, 95 (26): 260501

[23] Stütz M, Gr blacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Applied Physics Letters, 2007, 90(26): 261114

[24] Nagali E, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 2009, 103 (1): 013601

[25] Nagali E, Sciarrino F, De Martini F, Piccirillo B, Karimi E, Marrucci L, Santamato E. Polarization control of single photon quantum orbital angular momentum states. Optics Express, 2009, 17(21): 18745–18759

[26] Nagali E, Sansoni L, Sciarrino F, De Martini F, Marrucci L, Piccirillo B, Karimi E, Santamato E. Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics, 2009, 3(12): 720–723

[27] Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877

[28] Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141– 1143

[29] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 2006, 96(16): 163905

[30] Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters, 2002, 27(21): 1875–1877

[31] Bomzon Z, Kleiner V, Hasman E. Pancharatnam—Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters, 2001, 26(18): 1424–1426

[32] Niv A, Biener G, Kleiner V, Hasman E. Manipulation of the Pancharatnam phase in vectorial vortices. Optics Express, 2006, 14 (10): 4208–4220

[33] Moreno I, Davis J A, Ruiz I, Cottrell D M. Decomposition of radially and azimuthally polarized beams using a circular-polariza- tion and vortex-sensing diffraction grating. Optics Express, 2010, 18 (7): 7173–7183

[34] Fontaine N K, Doerr C R, Buhl L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference, 2012, paper OTu1l.2

[35] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496

[36] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H,Willner A E, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548

[37] Su T, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J, Cai X, Yoo S J. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402

[38] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G, Yu S. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366

[39] Matsko A B, Savchenkov A A, Strekalov D, Maleki L. Whispering gallery resonators for studying orbital angular momentum of a photon. Physical Review Letters, 2005, 95(14): 143904

[40] Cai X, Huang D, Zhang X. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Optics Express, 2006, 14(23): 11304–11311

[41] Yue Y, Huang H, Ahmed N, Yan Y, Ren Y, Xie G, Rogawski D, Tur M, Willner A E. Reconfigurable switching of orbital-angularmomentum- based free-space data channels. Optics Letters, 2013, 38 (23): 5118–5121

[42] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362

[43] Strain M J, Cai X, Wang J, Zhu J, Phillips D B, Chen L, Lopez- Garcia M, O’Brien J L, Thompson M G, Sorel M, Yu S. Fast electrical switching of orbital angular momentum modes using ultracompact integrated vortex emitters. Nature Communications, 2014, 5: 4856

[44] Li H, StrainMJ, Meriggi L, Chen L, Zhu J, Cicek K,Wang J, Cai X, Sorel M, Thompson M G, Yu S. Pattern manipulation via on-chip phase modulation between orbital angular momentum beams. Applied Physics Letters, 2015, 107(5): 051102

Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Frontiers of Optoelectronics, 2016, 9(3): 518. Xinlun CAI, Michael STRAIN, Siyuan YU, Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Frontiers of Optoelectronics, 2016, 9(3): 518.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!