光学学报, 2020, 40 (17): 1704002, 网络出版: 2020-08-25   

基于三维多孔石墨烯和胆甾相液晶胶囊的高效可视化太赫兹探测器 下载: 985次

High-Efficiency Visual Terahertz Detector Based on Three-Dimensional Porous Graphene and Cholesteric Liquid Crystal Microcapsule
作者单位
1 南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023
2 南京大学固体微结构物理国家重点实验室, 江苏 南京 210093
3 南京大学智能光传感与调控技术教育部重点实验室, 江苏 南京 210093
引用该论文

肖芮文, 肖俊羽, 金萍, 张荣轩, 王磊. 基于三维多孔石墨烯和胆甾相液晶胶囊的高效可视化太赫兹探测器[J]. 光学学报, 2020, 40(17): 1704002.

Ruiwen Xiao, Junyu Xiao, Ping Jin, Rongxuan Zhang, Lei Wang. High-Efficiency Visual Terahertz Detector Based on Three-Dimensional Porous Graphene and Cholesteric Liquid Crystal Microcapsule[J]. Acta Optica Sinica, 2020, 40(17): 1704002.

参考文献

[1] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

[3] Hangyo M. Development and future prospects of terahertz technology[J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101.

[4] Wang Y, Shen X L, Zhu Q F, et al. Optical planar and ridge waveguides in terbium gallium garnet produced by ion implantation and precise diamond blade dicing[J]. Optical Materials Express, 2018, 8(11): 3288-3294.

[5] 梁美彦, 任竹云, 张存林. 太赫兹空间探测技术研究进展[J]. 激光与光电子学进展, 2019, 56(18): 180004.

    Liang M Y, Ren Z Y, Zhang C L. Progress of terahertz space exploration technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180004.

[6] NEC. THz imager [EB/OL].[2020-04-14]. http:∥www.nec.com/en/global/prod/terahertz/.

[7] INO. MICROXCAM-384i-THz terahertz camera[EB/OL].[2020-07-10]. https:∥www.ino.ca/en/solutions/thz/microxcam-384i-thz/.

[8] OphirPhotonics. Pyrocam IIIHR beam profiling camera[EB/OL]. [2020-04-14].http:∥www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR.

[9] TYDEX. Golay detectors[EB/OL].[2020-04-14]. http:∥www.tydexoptics.com/products/thz_devices/golay_cell.

[10] Keilmann F, Renk K F. Visual observation of submillimeter wave laser beams[J]. Applied Physics Letters, 1971, 18(10): 452-454.

[11] Chen I A, Park S W, Chen G, et al. Ultra-broadband wavelength conversion sensor using thermochromic liquid crystals[J]. Proceedings of SPIE, 2013, 8624: 862415.

[12] Tadokoro Y, Nishikawa T, Kang B, et al. Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals[J]. Optics Letters, 2015, 40(19): 4456.

[13] Wang L, Qiu H S. Phan T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film[J]. Applied Science, 2018, 8(12): 2580.

[14] KangB, TakanoK, NakajimaM, et al. Portable THz imager based on a metamaterial- cholesteric liquid crystal hybrid structure[C]∥2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), August 27- September 1, 2017, Cancun, Mexico. New York: IEEE, 2017.

[15] 方波, 戚岑科, 邓玉强, 等. 宽频段太赫兹辐射计高吸收率涂层的特性[J]. 中国激光, 2019, 46(6): 0614020.

    Fang B, Qi C K, Deng Y Q, et al. Characteristics of highly absorptive coatings used in terahertz radiometry[J]. Chinese Journal of Lasers, 2019, 46(6): 0614020.

[16] Huang Z Y, Chen H H, Huang Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials, 2018, 28(2): 1704363.

[17] Shahil K M F, Balandin A A. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials[J]. Solid State Communications, 2012, 152(15): 1331-1340.

[18] Schwartz M, Lenzini G, Geng Y, et al. Liquid crystals: cholesteric liquid crystal shells as enabling material for information-rich design and architecture[J]. Advanced Materials, 2018, 30(30): 1870221.

[19] Jiang H Y, Tang Y Y, Zeng X H, et al. Visual measurement of the microscopic temperature of porous graphene based on cholesteric liquid crystal microcapsules[J]. Chinese Optics Letters, 2020, 18(3): 031201.

[20] Hebling J, Yeh K L, Hoffmann M C, et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 2008, 25(7): B6-B19.

[21] Hirori H, Doi A, Blanchard F, et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 2011, 98(9): 091106.

[22] Stasiek J, Stasiek A, Jewartowski M, et al. Liquid crystal thermography and true-colour digital image processing[J]. Optics & Laser Technology, 2006, 38(4/5/6): 243-256.

[23] Hay J L, Hollingsworth D K. A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals[J]. Experimental Thermal and Fluid Science, 1996, 12(1): 1-12.

[24] Baughn J W, Anderson M R, Mayhew J E, et al. Hysteresis of thermochromic liquid crystal temperature measurement based on hue[J]. Journal of Heat Transfer, 1999, 121(4): 1067-1072.

[25] Yan J, Huang Y, Chen C, et al. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorber[J]. Carbon, 2019, 152(2019): 545-555.

肖芮文, 肖俊羽, 金萍, 张荣轩, 王磊. 基于三维多孔石墨烯和胆甾相液晶胶囊的高效可视化太赫兹探测器[J]. 光学学报, 2020, 40(17): 1704002. Ruiwen Xiao, Junyu Xiao, Ping Jin, Rongxuan Zhang, Lei Wang. High-Efficiency Visual Terahertz Detector Based on Three-Dimensional Porous Graphene and Cholesteric Liquid Crystal Microcapsule[J]. Acta Optica Sinica, 2020, 40(17): 1704002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!