Photonics Research, 2017, 5 (6): 06000B39, Published Online: Dec. 7, 2017  

Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited] Download: 551次

Author Affiliations
1 Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2 Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
Copy Citation Text

Takahisa Harayama, Satoshi Sunada, Susumu Shinohara. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited][J]. Photonics Research, 2017, 5(6): 06000B39.

References

[1] StöckmannH.-J., Quantum Chaos: An Introduction (Cambridge University, 1999).

[2] HaakeF., Quantum Signatures of Chaos (Springer, 2000).

[3] NakamuraK.HarayamaT., Quantum Chaos and Quantum Dots (Oxford University, 2004).

[4] O. Bohigas, M. J. Giannoni, C. Schmit. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett., 1984, 52: 1-4.

[5] G. Casati, F. Valz-Gris, I. Guarneri. On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo Cimento Soc. Ital. Fis., 1980, 28: 279-282.

[6] M. V. Berry. Quantizing a classically ergodic system: Sinai’s billiard and the KKR method. Ann. Phys. (N.Y.), 1981, 131: 163-216.

[7] M. V. Berry. Semiclassical theory of spectral rigidity. Proc. R. Soc. London Ser. A, 1985, 400: 229-251.

[8] M. Sieber. Leading off-diagonal approximation for the spectral form factor for uniformly hyperbolic systems. J. Phys. A, 2002, 35: L613-L619.

[9] S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. Lett., 2004, 93: 014103.

[10] S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake. Periodic-orbit theory of level correlations. Phys. Rev. Lett., 2007, 98: 044103.

[11] M. Sieber, K. Richter. Correlations between periodic orbits and their role in spectral statistics. Phys. Scr., 2001, T90: 128-133.

[12] R. A. Jalabert, H. U. Baranger, A. D. Stone. Conductance fluctuations in the ballistic regime: a probe of quantum chaos?. Phys. Rev. Lett., 1990, 65: 2442-2445.

[13] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins, A. C. Gossard. Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett., 1992, 69: 506-509.

[14] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997, 385: 45-47.

[15] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho. High-power directional emission from microlasers with chaotic resonators. Science, 1998, 280: 1556-1564.

[16] S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, K. An. Observation of scarred modes in asymmetrically deformed microcylinder lasers. Phys. Rev. Lett., 2002, 88: 033903.

[17] S.-Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, C.-M. Kim. Quasiscarred resonances in a spiral-shaped microcavity. Phys. Rev. Lett., 2004, 93: 164102.

[18] H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B, 2004, 21: 923-934.

[19] V. A. Podolskiy, E. Narimanov, W. Fang, H. Cao. Chaotic microlasers based on dynamical localization. Proc. Natl. Acad. Sci. USA, 2004, 101: 10498-10500.

[20] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 2006, 97: 253901.

[21] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 2008, 100: 033901.

[22] E. Bogomolny, R. Dubertrand, C. Schmit. Trace formula for dieletric cavities: I. General properties. Phys. Rev. E, 2008, 78: 056202.

[23] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett., 2010, 104: 163902.

[24] Q. Song, L. Ge, B. Redding, H. Cao. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett., 2012, 108: 243902.

[25] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 2015, 114: 053903.

[26] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87: 61-111.

[27] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 2011, 5: 247-271.

[28] S. Sunada, T. Fukushima, S. Shinohara, T. Harayama, M. Adachi. Stable single-wavelength emission from fully chaotic microcavity lasers. Phys. Rev. A, 2013, 88: 013802.

[29] S. Sunada, S. Shinohara, T. Fukushima, T. Harayama. Signature of wave chaos in spectral characteristics of microcavity lasers. Phys. Rev. Lett., 2016, 116: 203903.

[30] M. Fisher. The renormalization group in the theory of critical behavior. Rev. Mod. Phys., 1974, 46: 597-616.

[31] T. Harayama, P. Davis, K. S. Ikeda. Stable oscillations of a spatially chaotic wave function in a microstadium laser. Phys. Rev. Lett., 2003, 90: 063901.

[32] T. Harayama, S. Sunada, K. S. Ikeda. Theory of two-dimensional microcavity lasers. Phys. Rev. A, 2005, 72: 013803.

[33] H. E. Türeci, A. D. Stone, B. Collier. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A, 2006, 74: 043822.

[34] H. E. Türeci, A. D. Stone, L. Ge. Theory of the spatial structure of nonlinear lasing modes. Phys. Rev. A, 2007, 76: 013813.

[35] W. E. Lamb. Theory of an optical maser. Phys. Rev. A, 1964, 134: A1429-A1450.

[36] SargentM.IIIScullyM. O.LambW. E.Jr., Laser Physics (Addison-Wesley, 1974).

[37] M. Sargent. Theory of a multimode quasiequilibrium semiconductor laser. Phys. Rev. A, 1993, 48: 717-726.

[38] T. Harayama, T. Fukushima, S. Sunada, K. S. Ikeda. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Phys. Rev. Lett., 2003, 91: 073903.

[39] H. E. Türeci, L. Ge, S. Rotter, A. D. Stone. Strong interactions in multimode random lasers. Science, 2008, 320: 643-646.

[40] L. Ge, R. J. Tandy, A. D. Stone, H. E. Türeci. Quantitative verification of ab initio self-consistent laser theory. Opt. Express, 2008, 16: 16895-16902.

[41] H. E. Türeci, A. D. Stone, L. Ge, S. Rotter, R. J. Tandy. Ab initio self-consistent laser theory and random lasers. Nonlinearity, 2009, 22: C1-C18.

[42] L. Ge, Y. D. Chong, A. D. Stone. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A, 2010, 82: 063824.

[43] A. Cerjan, A. D. Stone. Steady-state ab initio theory of lasers with injected signals. Phys. Rev. A, 2014, 90: 013840.

[44] S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone. Scalable numerical approach for the steady-state ab initio laser theory. Phys. Rev. A, 2014, 90: 023816.

[45] A. Pick, A. Cerjan, D. Liu, A. W. Rodriguez, A. D. Stone, Y. D. Chong, S. G. Johnson. Ab initio multimode linewidth theory for arbitrary inhomogeneous laser cavities. Phys. Rev. A, 2015, 91: 063806.

[46] A. I. Shnirelman. Ergodic properties of eigenfunctions. Usp. Mat. Nauk, 1974, 29: 181-182.

[47] Y. Colin de Verdie’re. Ergodicité et fonctions propres du laplacien. Commun. Math. Phys., 1985, 102: 497-502.

[48] S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 1987, 55: 919-941.

[49] B. Helffer, A. Martinez, D. Robert. Ergodicité et limite semiclassique. Commun. Math. Phys., 1987, 109: 313-326.

[50] S. Zelditch, M. Zworski. Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys., 1996, 175: 673-682.

[51] A. Bäcker, R. Schubert, P. Stifter. Rate of quantum ergodicity in Euclidean billiards. Phys. Rev. E, 1998, 57: 5425-5447.

[52] H. Schomerus, J. Tworzydlo. Quantum-to-classical crossover of quasibound states in open quantum systems. Phys. Rev. Lett., 2004, 93: 154102.

[53] S. Nonnenmacher, M. Zworski. Fractal Weyl laws in discrete models of chaotic scattering. J. Phys. A, 2005, 38: 10683-10702.

[54] J. P. Keating, M. Novaes, S. D. Prado, M. Sieber. Semiclassical structure of chaotic resonance eigenfunctions. Phys. Rev. Lett., 2006, 97: 150406.

[55] D. L. Shepelyansky. Fractal Weyl law for quantum fractal eigenstates. Phys. Rev. E, 2008, 77: 015202.

[56] M. Novaes. Resonances in open quantum maps. J. Phys. A, 2013, 46: 143001.

[57] T. Harayama, S. Shinohara. Ray-wave correspondence in chaotic dielectric billiards. Phys. Rev. E, 2015, 92: 042916.

[58] E. G. Altmann. Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics. Phys. Rev. A, 2009, 79: 013830.

[59] B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, H. Cao. Low-spatial coherence electrically-pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl. Acad. Sci. USA, 2015, 112: 1304-1309.

[60] M. Choi, S. Shinohara, T. Harayama. Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers. Opt. Express, 2008, 16: 17544-17559.

[61] A. Cerjan, B. Redding, L. Ge, S. F. Liew, H. Cao, A. D. Stone. Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach. Opt. Express, 2016, 24: 26006-26015.

[62] S. Sunada, T. Harayama, K. S. Ikeda. Multimode lasing in fully chaotic cavity lasers. Phys. Rev. E, 2005, 71: 046209.

[63] H. Fu, H. Haken. Multifrequency operation in a short-cavity standing-wave laser. Phys. Rev. A, 1991, 43: 2446-2454.

Takahisa Harayama, Satoshi Sunada, Susumu Shinohara. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited][J]. Photonics Research, 2017, 5(6): 06000B39.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!