红外与毫米波学报, 2020, 39 (4): 491, 网络出版: 2020-09-17   

基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测

Low-level wind shear observation based on different physical mechanisms by coherent Doppler lidar
作者单位
1 Institute for Advanced Ocean Study, College of Information Science and Engineering, Ocean Remote Sensing Institute, Ocean University of China,Qingdao26600,China
2 Institute for Advanced Ocean Study, College of Information Science and Engineering, Ocean Remote Sensing Institute, Ocean University of China,Qingdao26600,China
3 North China Regional Air Traffic Management Bureau of CAAC, Beijing100621, China
引用该论文

刘晓英, 吴松华, 张洪玮, 何志强, 张建军, 王筱晔, 陈晓敏. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测[J]. 红外与毫米波学报, 2020, 39(4): 491.

Xiao-Ying LIU, Song-Hua WU, Hong-Wei ZHANG, Zhi-Qiang HE, Jian-Jun ZHANG, Xiao-Ye WANG, Xiao-Min CHEN. Low-level wind shear observation based on different physical mechanisms by coherent Doppler lidar[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491.

参考文献

[1] ZHANGCheng-Chang. Flight Meteorology [M]. Beijing: China Meteorological Press(章澄昌. 飞行气象学. 北京: 气象出版社), 2000.

[2] WANGXiu-Chun, GUYing, LICheng. Aviation meteorology[M]. Beijing: Tsinghua University Press王秀春, 顾莹, 李程. 航空气象. 北京: 清华大学出版社) , 2014.

[3] YULan. The study on identification of wind shear based on image multiscale analysis[D]. Tianjin: Civil Aviation University of China于岚. 基于图像多尺度分析的低空风切变识别研究. 天津中国民航大学) , 2015.

[4] ShunC M, ChanP W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655.

[5] YANYan. Low-level wind shear alerting algorithm research of the direct detection LiDAR[D]. Tianjin: Civil Aviation University of China闫妍. 直接探测激光雷达的低空风切变预警算法研究.天津中国民航大学),2016.

[6] WANGQing-Mei, GUOLi-Le. Development of lidar in detection of low altitude wind shear[J]. LASER and INFRARED王青梅, 郭利乐. 激光雷达在机场低空风切变探测中的应用. 激光与红外), 2012, 42(12): 13241328.

[7] FujitaT T, CaracenaF. An analysis of three weather-related aircraft accidents[J]. Bulletin of the American Meteorological Society, 1977, 58(11): 11641181.

[8] ZHANGHong-Wei, WUSong-Hua, YINJia-Ping, et al. Airport low-level wind shear observation based on short-range CDL[J]. J.Infrared Millim.Waves (张洪玮, 吴松华, 尹嘉萍, . 基于短距相干测风激光雷达的机场低空风切变观测. 红外与毫米波学报), 2018, 37(04): 468476.

[9] HANYong-An. The alerting algorithm research of turbulence based on Coherent Doppler Lidar[D]. Tianjin: Civil Aviation University of China韩永安. 基于相干测风激光雷达的湍流预警算法研究. 天津中国民航大学), 2017.

[10] ZhangH, WuS, WangQ, et al. Airport low-level wind shear lidar observation at Beijing Capital International Airport[J]. Infrared Physics & Technology,2019,96: 113-122.

[11] WuS, ZhaiX, LiuB. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar[J]. Optics Express, Optical Society of America, 2019, 27(2): 1142.

[12] ZhaiX, WuS, LiuB, et al. Shipborne wind measurement and motion-induced error correction of a coherent Doppler lidar over the Yellow Sea in 2014[J]. Atmospheric Measurement Techniques, 2018, 11(3): 13131331.

[13] YINJia-Ping. Research and observation of turbine wake and wind field of MABL by Coherent Doppler Wind Lidar[D]. Qingdao: Ocean University of China尹嘉萍. 风机尾流场与海气边界层风场的多普勒激光雷达观测研究. 青岛中国海洋大学), 2015.

[14] ZhaiX, WuS, LiuB. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, Optical Society of America, 2017, 25(12): A515.

[15] WuS, LiuB, LiuJ, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, Optical Society of America, 2016, 24(10): A762.

[16] ShunC M, LauS Y. Implementation of a Doppler light detection and ranging ( LIDAR ) system for the Hong Kong International Airport[C]//10 th Conference on Aviation, Range and Aerospace Meteorology of the American Meteorological Society (AMS). 2002(13-16 May).

[17] ChoyB L, LeeO S M, ShunC M, et al. Prototype automatic LIDAR-based wind shear detection algorithms[C]//10th Conf. on Aviation Range & Aerospace Meteorology. 2004.

[18] ChanP W, HonK K, ShinD K. Combined use of headwind ramps and gradients based on LIDAR data in the alerting of low-level windshear/turbulence[J]. Meteorologische Zeitschrift, 2011, 20(6): 661670.

[19] ChanP W. Application of LIDAR-based F-factor in windshear alerting[J]. Meteorologische Zeitschrift, 2012, 21(2): 193204.

[20] ByrdG P, ProctorF H, BowlesR L. Evaluation of a technique to quantify microburst windshear hazard potential to aircraft[C]//29th IEEE Conference on Decision and Control. IEEE, 1990, 2: 689-694.

[21] VicroyD D. Microburst vertical wind estimation from horizontal wind measurements[R]. Hampton: NASA Langley Research Center, 1994.

[22] HintonA D. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation[R]. Hampton: NASA Langley Research Center, 1993.

[23] ShunC M, ChengC M, LeeO. LIDAR observations of terrain-induced flow and its application in airport wind shear monitoring[C]//International Conference on Alpine Meteorology (ICAM) and Mesoscale Alpine Programme (MAP) Meeting,. Brig, Switzerland: 2003: 1923.

[24] ChanP W. An event of tail strike of an aircraft due to terrain-induced wind shear at the Hong Kong International Airport[J]. Meteorological Applications, 2012, 19(3): 325333.

[25] SzetoK, ChanP W. High resolution numerical modelling of windshear episodes at the Hong Kong International Airport[C]//12 th Conference on Aviation, Range, & Aerospace Meteorology, American Meteorological Society. Atlanta, GA, USA: 2006.

[26] ChanP W, HonK K. Observation and numerical simulation of terrain-induced windshear at the Hong Kong International Airport in a planetary boundary layer without temperature inversions[J]. Advances in Meteorology, 2016: 1-9.

[27] ChanP W, ShaoA M. Depiction of complex airflow near Hong Kong International Airport using a Doppler LIDAR with a two-dimensional wind retrieval technique[J]. Meteorologische Zeitschrift, 2007, 16(5): 491504.

[28] StrauchR G, MerrittD A, MoranK P, et al. The Colorado wind-profiling network[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1(1): 3749.

[29] BarthelmieR J, PryorS C. Automated wind turbine wake characterization in complex terrain[J]. Atmospheric Measurement Techniques, 2019, 12(6): 34633484.

[30] SmalikhoI, KöppF, RahmS, et al. Measurement of atmospheric turbulence by 2-μm Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 17331747.

[31] ICAO. Manual on low-level wind shear [R]. Montreal: International Civil Aviation Organization,2005.

[32] NieuwpoortA M H, GoodenJ H M, De prinsJ L. Wind criteria due to obstacles at and around airports [R]. Amsterdam: National Aerospace Laboratory NLR, 2010.

刘晓英, 吴松华, 张洪玮, 何志强, 张建军, 王筱晔, 陈晓敏. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测[J]. 红外与毫米波学报, 2020, 39(4): 491. Xiao-Ying LIU, Song-Hua WU, Hong-Wei ZHANG, Zhi-Qiang HE, Jian-Jun ZHANG, Xiao-Ye WANG, Xiao-Min CHEN. Low-level wind shear observation based on different physical mechanisms by coherent Doppler lidar[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!