光学 精密工程, 2019, 27 (10): 2165, 网络出版: 2020-02-11   

空间大口径单体反射镜计量卸荷支撑研制中的关键技术

Key technology in developing of metrology mount for large aperture monolithic space-based mirror
作者单位
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
通过对空间大口径单体反射镜支撑技术发展现状及发展趋势的调研, 总结了当前大口径单体空间反射镜支撑技术中较为成熟的技术路线。在此技术路线中, 计量卸荷支撑是必须要攻克的一项核心难题。本文介绍了计量卸荷支撑的概念, 并针对计量卸荷支撑研制过程中的关键技术进行了深入的讨论, 包括支撑点数量、位置及支撑力大小的确定方法, 支撑力执行单元的方案设计以及计量卸荷精度的保证方法等; 通过对计量卸荷支撑研制过程中关键技术的总结, 期望对我国空间大口径单体反射镜的研制提供借鉴意义。
Abstract
Based on the investigation of the current situation and development trend of the large aperture monolithic space-based mirror support technology, this paper summarized the relatively mature technical route in the current support technology for the large aperture monolithic space-based mirror. In this technical route, the metrology mount was a bottleneck that must be resolved. This paper introduced the concept of the metrology mount and discussed the key technologies in its development. These included methods to determine the number and position of support points, the support force, to ensure unloading accuracy, etc. Summarizing the key technologies in metrology mount development will provide reference for the development of the large aperture monolithic space-based mirror in China.
参考文献

[1] KENDRICK S, STAHL H P. Large aperture space telescope mirror fabrication trades [J]. Proceedings of SPIE, 2008, 7010: 70102G.

[2] EGERMAN R, MATTEWS G, WYNN J. The current and future state-of-the-art glass optics for space-based astronomical observatories[R]. US: ITT Corporations.

[3] STAHL H P. Optics needs for future space telescope [J]. Proceedings of SPIE, 2003, 5180: 1-5.

[4] STAHL H P. Development of lightweight mirror technology for the next generation space telescope [J]. Proceedings of SPIE, 2001, 4451: 1-4.

[5] 张学军, 樊延超, 鲍赫, 等.超大口径空间光学遥感器的应用与发展 [J].光学 精密工程, 2016, 24(11): 2613-2626.

    ZHANG X J, FAN Y CH, BAO H, et al.. Application and development of ultra large aperture space optical remote sensors [J]. Opt.Precision Eng., 2016, 24(11): 2613-2626. (in Chinese)

[6] 杨会生, 张学军, 李志来, 等.径分体超大口径空间遥感器技术及其发展 [J].光学 精密工程, 2018, 26(6): 1288-1299.

    YANG H SH, ZHANG X J, LI ZH L, et al.. Technology and development of deployable segmented ultra-lafge-aperture space remote sensors [J]. Opt.Precision Eng., 2018, 26(6): 1288-1299. (in Chinese)

[7] ROBERT A B. The role of scientists in developing Hubble Space Telescope [J]. Proceedings of SPIE, 1984, 493: 19-21.

[8] LINCOLN L E. The Hubble Space Telescope mission, history, and systems [J]. Proceedings of SPIE, 1990, 1358: 422-441.

[9] PHILLIP S. An overview of the James Webb Space Telescope(JWST) Project [J]. Proceedings of SPIE, 2005, 5899: 58990P.

[10] STAHL H P. JWST mirror technology development results [J]. Proceedings of SPIE, 2007, 6671: 667102.

[11] JONATHAN P G, JOHN C M, MARK C, et al.. Science with James Webb Space Telescope [J]. Proceedings of SPIE, 2006, 6265: 62650N.

[12] MATTHEW A G, LESLYE A B, STUART D G, et al.. The james webb space telescope integrated science instrument module [J]. Proceedings of SPIE, 2006, 6265: 626513.

[13] KENDRICK S. Monolithic versus segmented primary mirror concepts for space telescope [J]. Proceedings of SPIE, 2009, 7426: 74260O.

[14] NEIN M E, LAWRENCE J F. Monolithic vs. deployable primary mirror trade considerations for the next generation space telescope[R]. US: NASA, 2002.

[15] STAHL H P. JWST mirror technology development lessons learned [J]. Proceedings of SPIE, 2010, 7796: 779604.

[16] ALLEN L, ANGEL R, MANGUS D, et al.. The hubble space telescope optical systems failure report [J]. US: NASA, 1990.

[17] FEINGERG L D, GEITHNER P H. Applying HST lessons learned to JWST [J]. Proceedings of SPIE, 2008, 7010: 70100N.

[18] 李宗轩, 金光, 张雷, 等.3.5 m口径空间望远镜单块式主镜技术展望 [J].中国光学, 2014, 7(4): 532-541.

    LI Z X, JIN G, ZHANG L, et al.. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture [J]. Chinese Optics, 2014, 7(4): 532-541. (in Chinese)

[19] MICHAEL H K. Metrology mount development and verification for a large spaceborne mirror [J]. Proceedings of SPIE, 1982, 332: 439-445.

[20] 何煦, 杨雪, 李颐, 等.大口径空间光学望远镜重力卸载点布局优化方法 [J].光学 精密工程, 2018, 26(11): 2764-2775.

    HE X, YANG X, LI Y, et al.. Gravity compensation optimization algorithm for large aperture spatial optical telescope [J]. Opt.Precision Eng., 2018, 26(11): 2764-2775. (in Chinese)

[21] DANIEL J M, TERENCE A F. Design and fabrication of the NASA 2.4-meter space telescope [J]. Proceedings of SPIE, 1982, 330: 139-143.

[22] MONTAGNINO L A. Test and evaluation of the Hubble Space Telescope 2.4-meter primary mirror [J]. Proceedings of SPIE, 1985, 571: 182-190.

[23] YODER J P R.Opto-Mechnical Systems Design [M]. 3rd ed. US: SPIE Press, 2006.

[24] ALDRING G, AKERLOF G, AMANULLAH R, et al.. Overview of the SuperNova/Acceleration Probe(SNAP) [J]. Proceedings of SPIE, 2002, 4835: 146-158.

[25] MICHAEL J S, MICHAEL L L, GREG A, et al.. SNAP Telescope [J]. Proceedings of SPIE, 2004, 5487: 1473-1484.

[26] LAMPTON M, SHOLL M, KRIM M. SNAP telescope: an update [J]. Proceedings of SPIE, 2004, 5166: 113-123.

[27] BESUNER R W, CHOW K P, KENDRICK S E. Selective reinforcement of a 2 m-class lightweight mirror for horizontal beam optical testing [J]. Proceedings of SPIE, 2008, 7018: 701816.

[28] SHINJI M, YASUHIRO K, SHIN-ICHIRO, et al.. Precision pointing control for SPICA: risk mitigation phase study [J]. Proceedings of SPIE, 2014, 9143: 914347.

[29] TAKAO N, HAROSHI S, TAKASHI O, et al.. The next-generation infrared astronomy mission SPICA under the new framework [J]. Proceedings of SPIE, 2014, 9143: 91431l.

[30] OGAWA H, NAKAGAWA T, MATSUHARA K, et al.. New cryogenic system of the next-generation infrared astronomy mission SPICA [J]. Proceedings of SPIE, 2016, 9904: 99042H.

[31] WEST S C, BAILEY S H, BAUMAN S.A space imaging concept based on a 4 m structured spun-cast borosilicate monolithic primary mirror [J]. Proceedings of SPIE, 2010, 7731: 77311O.

[32] MARC P. Science with an 8-mter to 16-meter optical/UV space telescope [J]. Proceedings of SPIE, 2008, 7010: 701021.

[33] STAHL H P. Design study of 8 meter monolithic mirror UV/optical space telescope [J]. Proceedings of SPIE, 2008, 7010: 701022.

[34] WILLIAM R O, FEINBERG L D, PURVES L R. ATLAST-9.2 m: a large-aperture deployable space telescope [J]. Proceedings of SPIE, 2010, 7731: 77312M.

[35] ARGABRIGHT V, ARNOLD B, ARONSTEIN D. Advanced Technology Large-Aperture Space Telescope(ATLAST): a technology roadmap for the next decade [R]. US: NASA, 2009.

[36] HYDE T, POSTMAN M. Technology development project plan for the Advanced Technology Large Aperture Space Telescope(ATLAST), a roadmap for UVIOR Technology, 2010-2020[R]. US: NASA, 2009.

[37] HULL T, HARTMAN P, R CLARKSON A. Lightweight high-performance 1-4 meter class spaceborne mirrors: emerging technology for demanding spaceborne requirement [J]. Proceedings of SPIE, 2010, 7739: 77390C.

[38] NELSON J, LUBLINER J, Mast T, et al.. Telescope mirror supports: plate deflections on point supports [J] SPIE, 1982, 332: 212-218.

[39] KAERCHER J, EISENTRACGER P, S M. Mechanical principles of large mirror supports [J]. Proceedings of SPIE, 2010, 7733: 77332O.

[40] GREGORY J M, VICTOR L, GENBERG, KEITH B D, et al.. Design optimization of actuator layouts of adaptive optics using a genetic algorithm [J]. Proceedings of SPIE, 2015, 5877: 58770L.

[41] 苏定强, 崔向群.主动光学——新一代大望远镜的关键技术 [J].天文学进展, 1999, 17(1): 1-14.

    SU D Q, CUI X Q. Active optics—key technology of the new generation telescope [J]. Progress in astronomy, 1999, 17(1): 1-14.(in Chinese)

[42] 兰斌, 吴小霞, 杨洪波, 等.广义最小二乘法在主动官学模式定标中的应用 [J].红外与激光工程, 2017, 46(6): 0617001.

    LAN B, WU X X, YANG H B, et al.. Application of generalized least squares method in the calibration of active optics mode [J]. Infrared and Laser Engineering, 2017, 46(6): 0617001.(in Chinese)

[43] 马永杰, 云文霞.遗传算法研究进展 [J].计算机应用研究, 2012, 29(4): 1201-1210.

    MA Y J, YUN W X. Research progress of genetic algorithme [J]. Application Research of Computers, 2012, 29(4): 1201-1210.(in Chinese)

[44] 段黎明, 杨尚明, 张霞, 等.基于遗传算法的三角网格折叠简化 [J].光学 精密工程, 2018, 26(6): 1489-1496.

    DUAN L M, YANG SH M, ZHANG X, et al.. Collapsing simplification of triangular mesh based on genetic algorithm [J]. Opt.Precision Eng., 2018, 26(6): 1489-1496. (in Chinese)

[45] 王克军.天基大口径反射镜轻量化设计及复合支撑技术研究 [D].长春: 中国科学院长春光学精密机械与物理研究所, 2016: 96-100.

    WANG K J. Research on the Lightweight Design and Compound Support of the Large-aperture Mirror for Space-Based Telescope [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2016: 96-100. (in Chinese)

[46] 朱熠, 陈涛, 王建立, 等.1.23 m SiC主镜的本征模式主动光学校正 [J].光学 精密工程, 2017, 25(10): 2552-2564.

    ZHU Y, CHEN T, WANG J L, et al.. Active correction of 1.23 m SiC mirror using bending mode [J]. Opt.Precision Eng., 2017, 25(10): 2552-2564. (in Chinese)

[47] BABISH R C, RIGBY R R. Optical fabrication of a 60-inch mirror [J]. Proceedings of SPIE, 1979, 183: 105-108.

[48] MONTAGNINO L A, ARNOLD R, CHADWICK D, et al.. Test and evaluation of a 60-inch test mirror [J]. Proceedings of SPIE, 1979, 183: 109-113.

[49] EE Bloemhof, JC Lam, VA Feria, et al.. Extracting the zero-gravity surface figure of a mirror through multiple clockings in a flightlike hexapod mount [J]. Applied Optics, 2009, 48(21): 4239-4245.

[50] COLE G C, GARFIELD R, PETERSA T, et al.. An overview of optical fabrication of the JWST mirror segments at Tinsley [J]. Proceedings of SPIE, 2006, 6265: 62650V.

[51] CASTEL D, SEIN E, LOPEZ S, et al.. The 3.2m all SiC telescope for SPICA [J]. Proceedings of SPIE, 2012, 8450: 84502P.

[52] 张博文, 王小勇, 赵野, 等.天基大口径反射镜支撑技术的发展 [J].红外与激光工程, 2018, 47(11): 1113001.

    ZHANG B W, WANG X Y, ZHAO Y, et al.. Progress of support technique of space-based large aperture mirror [J]. Infrared and Laser Engineering, 2018, 47(11): 1113001.(in Chinese)

[53] 吴小霞, 李剑锋, 宋淑梅, 等.4 m SiC主镜的主动支撑系统 [J].光学 精密工程, 2014, 22(9): 2451-2457.

    WU X X, LI J F, SONG SH M, et al.. Active support system for 4 m SiC lightweight primary mirror [J]. Opt.Precision Eng., 2014, 22(9): 2451-2457. (in Chinese)

[54] 魏梦琦, 吴小霞, 高则超, 等.4 m SiC主镜硬点定位机构指标性能测试 [J].红外与激光工程, 2019, 48(4): 0418004.

    WEI M Q, WU X X, GAO Z CH, et al.. Performance analysis of hardpoint positioning mechanism for 4 m SiC primary mirror [J]. Infrared and Laser Engineering, 2019, 48(4): 0418004.(in Chinese)

董得义, 庞新源, 张学军, 樊延超, 李志来, 杨利伟, 胡海飞. 空间大口径单体反射镜计量卸荷支撑研制中的关键技术[J]. 光学 精密工程, 2019, 27(10): 2165. DONG De-yi, PANG Xin-yuan, ZHANG Xue-jun, FAN Yan-Chao, LI Zhi-lai, YANG Li-wei, HU Hai-fei. Key technology in developing of metrology mount for large aperture monolithic space-based mirror[J]. Optics and Precision Engineering, 2019, 27(10): 2165.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!