光学学报, 2017, 37 (8): 0826003, 网络出版: 2018-09-07   

基于太阳能收集的宽频螺旋纳米天线设计 下载: 707次

Design of Broadband Spiral Nanoantenna Based on Solar Energy Harvesting
作者单位
西安电子科技大学电子装备结构设计教育部重点实验室, 陕西 西安 710071
引用该论文

徐志超, 李娜, 段宝岩. 基于太阳能收集的宽频螺旋纳米天线设计[J]. 光学学报, 2017, 37(8): 0826003.

Zhichao Xu, Na Li, Baoyan Duan. Design of Broadband Spiral Nanoantenna Based on Solar Energy Harvesting[J]. Acta Optica Sinica, 2017, 37(8): 0826003.

参考文献

[1] Sabaawi A M A, Tsimenidis C C, Sharif B S. Analysis and modeling of infrared solar rectennas[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 9000208.

    Sabaawi A M A, Tsimenidis C C, Sharif B S. Analysis and modeling of infrared solar rectennas[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 9000208.

[2] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.

    Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.

[3] Kotter D K, Novack S D, Slafer W D, et al. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors[J]. Journal of Solar Energy Engineering, 2010, 132(1): 011014.

    Kotter D K, Novack S D, Slafer W D, et al. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors[J]. Journal of Solar Energy Engineering, 2010, 132(1): 011014.

[4] Goswami D Y, Vijayaraghavan S, Lu S. et al. New and emerging developments in solar energy[J]. Solar Energy, 2004, 76(1-3): 33-43.

    Goswami D Y, Vijayaraghavan S, Lu S. et al. New and emerging developments in solar energy[J]. Solar Energy, 2004, 76(1-3): 33-43.

[5] Kotter DK, Novack SD, Slafer WD, et al. Solar nantenna electromagnetic collectors[C]. Jacksonville: ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences, 2008: 409- 415.

    Kotter DK, Novack SD, Slafer WD, et al. Solar nantenna electromagnetic collectors[C]. Jacksonville: ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences, 2008: 409- 415.

[6] Bailey R L. A proposed new concept for a solar-energy converter[J]. Journal of Engineering for Power, 1972, 94(2): 73-77.

    Bailey R L. A proposed new concept for a solar-energy converter[J]. Journal of Engineering for Power, 1972, 94(2): 73-77.

[7] Marks A M. Device for conversion of light power to electric power: US 4445050 A[P].1984-04-24.

    Marks A M. Device for conversion of light power to electric power: US 4445050 A[P].1984-04-24.

[8] Balanis CA. Antenna theory: analysis and design[M]. New Jersey: John Wiley & Sons, 2005: 147- 150.

    Balanis CA. Antenna theory: analysis and design[M]. New Jersey: John Wiley & Sons, 2005: 147- 150.

[9] Vandenbosch G A E, Ma Z K. Upper bounds for the solar energy harvesting efficiency of nano-antennas[J]. Nano Energy, 2012, 1(3): 494-502.

    Vandenbosch G A E, Ma Z K. Upper bounds for the solar energy harvesting efficiency of nano-antennas[J]. Nano Energy, 2012, 1(3): 494-502.

[10] Hussein M. Areed N F F, Hameed M F O, et al. Design of flower-shaped dipole nano-antenna for energy harvesting[J]. IET Optoelectronics, 2014, 8(4): 167-173.

    Hussein M. Areed N F F, Hameed M F O, et al. Design of flower-shaped dipole nano-antenna for energy harvesting[J]. IET Optoelectronics, 2014, 8(4): 167-173.

[11] SarehrazM, BuckleK, WellerT, et al. Rectenna developments for solar energy collection[C]. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 2005: 78- 81.

    SarehrazM, BuckleK, WellerT, et al. Rectenna developments for solar energy collection[C]. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 2005: 78- 81.

[12] Ma Z K. Vandenbosch G A E. Optimal solar energy harvesting efficiency of nano-rectenna systems[J]. Solar Energy, 2013, 88(1): 163-174.

    Ma Z K. Vandenbosch G A E. Optimal solar energy harvesting efficiency of nano-rectenna systems[J]. Solar Energy, 2013, 88(1): 163-174.

[13] SaynakU. Novel rectangular spiral antennas[D]. Izmir: Izmir Institute of Technology, 2007: 4- 6.

    SaynakU. Novel rectangular spiral antennas[D]. Izmir: Izmir Institute of Technology, 2007: 4- 6.

[14] Zhu ZX, JoshiS, PelzB, et al. Overview of optical rectennas for solar energy harvesting[C]. SPIE , 2013, 8824: 88240O.

    Zhu ZX, JoshiS, PelzB, et al. Overview of optical rectennas for solar energy harvesting[C]. SPIE , 2013, 8824: 88240O.

[15] Gallo M, Mescia L, Losito O, et al. Design of optical antenna for solar energy collection[J]. Energy, 2012, 39(1): 27-32.

    Gallo M, Mescia L, Losito O, et al. Design of optical antenna for solar energy collection[J]. Energy, 2012, 39(1): 27-32.

[16] Sabaawi A MA, Tsimenidis CC, Sharif BS. Infra-red nano-antennas for solar energy collection[C]. Antennas and Propagation Conference, 2011: 1- 4.

    Sabaawi A MA, Tsimenidis CC, Sharif BS. Infra-red nano-antennas for solar energy collection[C]. Antennas and Propagation Conference, 2011: 1- 4.

[17] BozzettiM, de CandiaG, GalloM, et al. Analysis and design of a solar rectenna[C]. IEEE International Symposium on Industrial Electronics, 2010: 2001- 2004.

    BozzettiM, de CandiaG, GalloM, et al. Analysis and design of a solar rectenna[C]. IEEE International Symposium on Industrial Electronics, 2010: 2001- 2004.

[18] Sabaawi A MA, Tsimenidis CC, Sharif BS. Infra-redspiral nano-antennas[C]. Antennas and Propagation Conference, 2012: 1- 4.

    Sabaawi A MA, Tsimenidis CC, Sharif BS. Infra-redspiral nano-antennas[C]. Antennas and Propagation Conference, 2012: 1- 4.

[19] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 8456.

    Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 8456.

[20] NovotnyL, HechtB. Principles of nano-optics[M]. Cambridge : Cambridge University Press, 2012: 247- 248.

    NovotnyL, HechtB. Principles of nano-optics[M]. Cambridge : Cambridge University Press, 2012: 247- 248.

[21] Lu G W, Zhang T Y, Li W Q, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

    Lu G W, Zhang T Y, Li W Q, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

[22] Mohammadi A, Kaminski F, Sandoghdar V, et al. Fluorescence enhancement with the optical (bi-) conical antenna[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7372-7377.

    Mohammadi A, Kaminski F, Sandoghdar V, et al. Fluorescence enhancement with the optical (bi-) conical antenna[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7372-7377.

[23] Kaminski F, Sandoghdar V, Agio M. Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures[J]. Journal of Computational and Theoretical Nanoscience, 2007, 4(3): 635-643.

    Kaminski F, Sandoghdar V, Agio M. Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures[J]. Journal of Computational and Theoretical Nanoscience, 2007, 4(3): 635-643.

[24] WangI, Du YP. Broadband optical antenna with a disk structure[C].SPIE , 2011, 8307: 1- 7.

    WangI, Du YP. Broadband optical antenna with a disk structure[C].SPIE , 2011, 8307: 1- 7.

[25] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

    Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[26] Gao H, Li K, Kong F, et al. Optimizing nano-optical antenna for the enhancement of spontaneous emission[J]. Progress in Electromagnetics Research, 2010, 104: 313-331.

    Gao H, Li K, Kong F, et al. Optimizing nano-optical antenna for the enhancement of spontaneous emission[J]. Progress in Electromagnetics Research, 2010, 104: 313-331.

[27] Novotny L. Effective wavelength scaling for optical antennas[J]. Physical Review Letters, 2007, 98(26): 266802.

    Novotny L. Effective wavelength scaling for optical antennas[J]. Physical Review Letters, 2007, 98(26): 266802.

[28] 张旭, 吴禹, 仝旋, 等. 银纳米线表面等离子体激元导光的研究[J]. 光学学报, 2016, 36(1): 0124001.

    张旭, 吴禹, 仝旋, 等. 银纳米线表面等离子体激元导光的研究[J]. 光学学报, 2016, 36(1): 0124001.

    Zhang Xu, Wu Yu, Tong Xuan, et al. Study of surface plasmon polariton waveguide of silver nanowire[J]. Acta Optica Sinica, 2016, 36(1): 0124001.

    Zhang Xu, Wu Yu, Tong Xuan, et al. Study of surface plasmon polariton waveguide of silver nanowire[J]. Acta Optica Sinica, 2016, 36(1): 0124001.

[29] 石建平, 董可秀, 黄圆, 等. 基于纳米光学天线的扫描近场光学探针研究[J]. 光学学报, 2010, 30(5): 1459-1463.

    石建平, 董可秀, 黄圆, 等. 基于纳米光学天线的扫描近场光学探针研究[J]. 光学学报, 2010, 30(5): 1459-1463.

    Shi Jianping, Dong Kexiu, Huang Yuang, et al. Scanning nera-field optical probe based nano-antennas[J]. Acta Optica Sinica, 2010, 30(5): 1459-1463.

    Shi Jianping, Dong Kexiu, Huang Yuang, et al. Scanning nera-field optical probe based nano-antennas[J]. Acta Optica Sinica, 2010, 30(5): 1459-1463.

徐志超, 李娜, 段宝岩. 基于太阳能收集的宽频螺旋纳米天线设计[J]. 光学学报, 2017, 37(8): 0826003. Zhichao Xu, Na Li, Baoyan Duan. Design of Broadband Spiral Nanoantenna Based on Solar Energy Harvesting[J]. Acta Optica Sinica, 2017, 37(8): 0826003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!