中国激光, 2016, 43 (5): 0505006, 网络出版: 2016-05-04   

基于FBG铥钬共掺光纤放大器反向ASE的再利用

Reusing the Backward ASE in Tm-Ho Co-Doped Fiber Amplifiers Based on FBG
作者单位
中国科学院安徽光学精密机械研究所安徽省光子器件与材料重点实验室, 安徽 合肥 230031
摘要
针对铥钬共掺光纤放大器在放大2 μm以上长波段信号光时因存在反向放大的自发辐射(ASE)而造成的放大效率浪费的问题,提出了在放大器输入端插入一个中心波长为1950 nm的光纤光栅(FBG)的方案,并从理论上研究了光栅参数对放大器在2 μm以上波段增益特性的影响。通过数值模拟给出了几种不同的铥钬掺杂比例下、有无FBG时,放大器对2040 nm信号光的增益随光纤长度的变化曲线,分析了插入FBG后放大器最大增益和对应的最佳光纤长度的变化,以及这种变化对铥钬掺杂比例的依赖性。通过模拟放大器输入端的反向ASE光谱,以及抽运光、信号光、ASE与FBG反射光功率沿光纤传输的演化行为,解释了FBG对放大器产生影响的根本原因,并进一步指出为提高放大器长波段增益而加入短波段FBG的适用条件。并初步研究了加入FBG对放大器增益谱及噪声特性的影响。
Abstract
Regarding to the problem that the backward amplified spontaneous emissions (ASE) in Tm-Ho co-doped fiber amplifier reduce the amplification efficiency beyond 2 μm band, the influence on gain property beyond 2 μm band by inserting a 1950 nm fiber Bragg grating (FBG) into the input terminal of the amplifiers with different Tm/Ho doping ratios is studied theoretically. Simulation results of the 2040 nm signal gain over the fiber length with or without FBG are given under several different Tm/Ho doping ratios in order to analyze the variations of maximum gain and corresponding optimal fiber length due to the insertion of FBG, as well as the dependence of the variations on Tm/Ho doping ratio. The influence of FBG is explained through simulating the backward ASE spectrum at z=0, and the propagation of pump, signal, ASE and reflected light from FBG along the fiber. Discussions on the simulation results further point out the applicable conditions of short-band FBG for improving long-band gain of amplifier. In addition, the influences on gain spectrum and noise characteristics by FBG are also investigated.
参考文献

[1] 刘 江, 师红星, 刘 昆, 等. 210 W全光纤结构单频、单偏振掺铥光纤激光器[J]. 中国激光, 2014, 41(5): 0505007-7.

[2] 王礼, 杨经纬, 蔡旭武, 等. 2.09 μm纳秒钬激光抽运的磷锗锌光参量振荡器[J]. 中国激光, 2014, 41(1): 0102008.

    Wang Li, Yang Jingwei, Cai Xuwu, et al.. 2.09 μm nanosecond holmium laser pumped ZnGeP2 optical parametric oscillator[J]. Chinese J Lasers, 2014, 41(1): 0102008.

[3] 吕涛,张伟, 陈防. 光纤传输调Q铥激光微外科手术刀切割生物软组织实验研究[J]. 光学学报, 2014, 34(11): 1117001.

    Lü Tao, Zhang Wei, Chen Fang. Experimental research of dissecting biological soft tissues induced by fiber-guided Q-switched thulium:YAG laser microsurgical scalpel[J]. Acta Optica Sinica, 2014, 34(11): 1117001.

[4] Scholle K, Lamrini S, Koopmann P, et al.. 2 μm laser sources and their possible applications[M].//Bishnu Pal. Frontiers in Guided Wave Optics and Optoelectronics. Rijeka: INTECH, 2010: 471-500.

[5] Geng J, Wang Q, Jiang S. 2 μm fiber laser sources and their applications[C]. SPIE, 2011, 8164: 816409.

[6] Walsh B M. Review of Tm and Ho materials: Spectroscopy and lasers[J]. Laser Physics, 2009, 19(4): 855-866.

[7] Oh K , Morse T F, Kilian A, et al.. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser[J]. Optics Letters, 1994, 19(4): 278-280.

[8] Jackson S D, Mossman S. High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser[J]. Applied Physics B, 2003, 77(5): 489-491.

[9] Yuen T, Billy R, David B, et al.. Tm3+/Ho3+ codoped tellurite fiber laser[J]. Optics Letters, 2008, 33(11): 1282-1284.

[10] Xue G, Zhang B, Yin K, et al.. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

[11] Min B, Yoon H, Lee W, et al.. Performance improvement of wideband EDFA by ASE injection from C band to L band amplifier[C]. Proceedings of the Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference, 1999, (2): 1346-1347.

[12] 惠小丽, 林如俭. 基于单个光纤光栅反射技术的高性能L波段EDFA[J]. 光通信技术, 2003, 27(10): 31-33.

    Hui Xiaoli, Lin Rujian. Gain enhanced L-band erbium-doped fiber amplifier using a single fiber Bragg grating[J]. Optical Communication Technology, 2003, 27(10): 31-33.

[13] Harun S W, Subramaniam T, Tamchek N, et al.. Gain and noise figure performances of L-band EDFA with an injection of C-band ASE[J]. Jurnal Teknologi, 2004, 40(D): 9-16.

[14] Han Q, Yao Y, Chen Y, et al.. Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating[J]. Optics Letters, 2015, 40(11): 2634-2636.

[15] Gao G, Wang G, Yu C, et al.. Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass[J]. Journal of Luminescence, 2009, 129(9): 1042-1047.

[16] Jackson S D, King T A. CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1578-1587.

[17] Allain J Y, Monerie M, Poignant H. High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04 μm[J]. Electronics Letters, 1991, 27(17): 1513-1515.

[18] Feng T, Yan F, Peng W, et al.. Theoretical analysis of characteristics for 2 μm Tm3+∶Ho3+ co-doped silica fiber laser pumped by a 1550 nm fiber laser[J]. Optical Fiber Technology, 2012, 18(4): 204-208.

[19] Digonnet M J, Gaeta C J. Theoretical analysis of optical fiber laser amplifiers and oscillators[J]. Applied Optics, 1985, 24(3): 333-342.

[20] Mao Q, Wang J, Sun X, et al.. A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber[J]. Optics Communications, 1999, 159(1-3): 149-157.

[21] Zou X, Toratani H. Spectroscopic properties and energy transfers in Tm3+ singly and Tm3+ Ho3+ doubly-doped glasses[J]. Journal of Non-Crystalline Solids, 1996, 195(1-2): 113-124.

[22] Wang J. Theoretical modelling of thulium-sensitized holmium continuous-wave fibre lasers[J]. Journal of Modern Optics, 2007, 41(7): 1457-1472.

龙虎, 姚波, 毛庆和. 基于FBG铥钬共掺光纤放大器反向ASE的再利用[J]. 中国激光, 2016, 43(5): 0505006. Long Hu, Yao Bo, Mao Qinghe. Reusing the Backward ASE in Tm-Ho Co-Doped Fiber Amplifiers Based on FBG[J]. Chinese Journal of Lasers, 2016, 43(5): 0505006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!