Photonics Research, 2020, 8 (7): 07001064, Published Online: Jun. 4, 2020   

Ultrabroadband and sensitive cavity optomechanical magnetometry Download: 726次

Author Affiliations
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
Copy Citation Text

Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry[J]. Photonics Research, 2020, 8(7): 07001064.

References

[1] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 2008, 321: 1172-1176.

[2] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86: 1391-1452.

[3] M. Metcalfe. Applications of cavity optomechanics. Appl. Phys. Rev., 2014, 1: 031105.

[4] A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys., 2008, 10: 095015.

[5] LIGO Scientific. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116: 061102.

[6] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol., 2009, 4: 820-823.

[7] W. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 2016, 7: 12311.

[8] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high resolution microchip optomechanical accelerometer. Nat. Photonics, 2012, 6: 768-772.

[9] F. G. Cervantes, L. Kumanchik, J. Pratt, J. Taylor. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl. Phys. Lett., 2014, 104: 221111.

[10] S. Basiri-Esfahani, A. Armin, S. Forstner, W. P. Bowen. Precision ultrasound sensing on a chip. Nat. Commun., 2019, 10: 132.

[11] S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, H. Rubinsztein-Dunlop. Cavity optomechanical magnetometry. Phys. Rev. Lett., 2012, 108: 120801.

[12] S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, W. P. Bowen. Ultrasensitive optomechanical magnetometry. Adv. Mater., 2014, 26: 6348-6353.

[13] C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, W. P. Bowen. Optomechanical magnetometry with a macroscopic resonator. Phys. Rev. Appl., 2016, 5: 044007.

[14] BowenW. P.YuC., “Cavity optomechanical magnetometry,” in High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation (Springer International Publishing, 2016), Vol. 19.

[15] B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, U. L. Andersen. Quantum enhanced optomechanical magnetometry. Optica, 2018, 5: 850-857.

[16] B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, W. P. Bowen. Invited article: scalable high-sensitivity optomechanical magnetometers on a chip. APL Photon., 2018, 3: 120806.

[17] J. Zhu, G. Zhao, I. Savukov, L. Yang. Polymer encapsulated microcavity optomechanical magnetometer. Sci. Rep., 2017, 7: 8896.

[18] ColombanoM. F.ArreguiG.BonellF.CapujN. E.Chavez-AngelE.PitantiA.ValenzuelaS. O.Sotomayor-TorresC. M.Navarro-UrriosD.CostacheM. V., “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

[19] J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, M. R. Freeman. Nanotorsional resonator torque magnetometry. Appl. Phys. Lett., 2010, 96: 072513.

[20] M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, P. E. Barclay. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol., 2019, 12: 127-132.

[21] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, S. J. Wind. High-resolution scanning SQUID microscope. Appl. Phys. Lett., 1995, 66: 1138-1140.

[22] F. Baudenbacher, L. E. Fong, J. R. Holzer, M. Radparvar. Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett., 2003, 82: 3487-3489.

[23] J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, K. A. Moler. Scanning SQUID susceptometers with submicron spatial resolution. Rev. Sci. Instrum., 2016, 87: 093702.

[24] H. B. Dang, A. C. Maloof, M. V. Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett., 2010, 97: 151110.

[25] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, D. M. Stamper-Kurn. High-resolution magnetometry with a spinor Bose-Einstein condensate. Phys. Rev. Lett., 2007, 98: 200801.

[26] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, J. Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater., 2009, 8: 383-387.

[27] T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup. Subpicotesla diamond magnetometry. Phys. Rev. X, 2015, 5: 041001.

[28] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[29] J. C. Knight, G. Cheung, F. Jacques, T. A. Birks. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 1997, 22: 1129-1131.

[30] T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, W. P. Bowen. Thermo-optic locking of a semiconductor laser to a microcavity resonance. Opt. Express, 2009, 17: 21977-21985.

[31] EngdahlG., Handbook of Giant Magnetostrictive Materials (Academic, 2000).

[32] Y. J. Bi, J. S. Abell. Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique. J. Cryst. Growth, 1997, 172: 440-449.

[33] G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, W.-S. Zhan. ⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. Appl. Phys. Lett., 1995, 67: 2005-2007.

Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen. Ultrabroadband and sensitive cavity optomechanical magnetometry[J]. Photonics Research, 2020, 8(7): 07001064.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!