光学学报, 2018, 38 (8): 0815005, 网络出版: 2018-09-06   

彩色复合条纹投影测量系统串扰消除方法 下载: 1474次特邀研究论文

Crosstalk Elimination Method for Color Composite Fringe Projection Measuring Systems
作者单位
河北工业大学机械工程学院, 天津 300130
引用该论文

张宗华, 连晓洁, 高楠. 彩色复合条纹投影测量系统串扰消除方法[J]. 光学学报, 2018, 38(8): 0815005.

Zonghua Zhang, Xiaojie Lian, Nan Gao. Crosstalk Elimination Method for Color Composite Fringe Projection Measuring Systems[J]. Acta Optica Sinica, 2018, 38(8): 0815005.

参考文献

[1] 安冬, 盖绍彦, 达飞鹏. 一种新的基于条纹投影的三维轮廓测量系统模型[J]. 光学学报, 2014, 34(5): 0512004.

    安冬, 盖绍彦, 达飞鹏. 一种新的基于条纹投影的三维轮廓测量系统模型[J]. 光学学报, 2014, 34(5): 0512004.

    An D, Gai S Y, Da F P. A new model of three-dimensional shape measurement system based on fringe projection[J]. Acta Optica Sinica, 2014, 34(5): 0512004.

    An D, Gai S Y, Da F P. A new model of three-dimensional shape measurement system based on fringe projection[J]. Acta Optica Sinica, 2014, 34(5): 0512004.

[2] 孙士杰, 翟爱平, 曹益平. 一种快速获取物体三维形貌和纹理信息的算法[J]. 光学学报, 2016, 36(3): 0312001.

    孙士杰, 翟爱平, 曹益平. 一种快速获取物体三维形貌和纹理信息的算法[J]. 光学学报, 2016, 36(3): 0312001.

    Sun S J, Zhai A P, Cao Y P. A fast algorithm for obtaining 3D shape and texture information of objects[J]. Acta Optica Sinica, 2016, 36(3): 0312001.

    Sun S J, Zhai A P, Cao Y P. A fast algorithm for obtaining 3D shape and texture information of objects[J]. Acta Optica Sinica, 2016, 36(3): 0312001.

[3] Liu B, Wang P, Zeng Y, et al. Measuring method for micro-diameter based on structured-light vision technology[J]. Chinese Optics Letters, 2010, 8(7): 666-669.

    Liu B, Wang P, Zeng Y, et al. Measuring method for micro-diameter based on structured-light vision technology[J]. Chinese Optics Letters, 2010, 8(7): 666-669.

[4] 林辉. 高动态范围光亮表面的结构光三维形貌测量方法研究与实现[D]. 广州: 广东工业大学, 2017.

    林辉. 高动态范围光亮表面的结构光三维形貌测量方法研究与实现[D]. 广州: 广东工业大学, 2017.

    LinH. Structured light based high dynamic range shiny surface 3D shape measurement technique and system development[D]. Guangzhou:Guangdong University of Technology, 2017.

    LinH. Structured light based high dynamic range shiny surface 3D shape measurement technique and system development[D]. Guangzhou:Guangdong University of Technology, 2017.

[5] Dipanda A, Woo S. Towards a real-time 3D shape reconstruction using a structured light system[J]. Pattern Recognition, 2005, 38(10): 1632-1650.

    Dipanda A, Woo S. Towards a real-time 3D shape reconstruction using a structured light system[J]. Pattern Recognition, 2005, 38(10): 1632-1650.

[6] Skydan O A, Lalor M J, Burton D R. Using colored structured light in 3-D surface measurement[J]. Optics and Lasers in Engineering, 2005, 43(7): 801-814.

    Skydan O A, Lalor M J, Burton D R. Using colored structured light in 3-D surface measurement[J]. Optics and Lasers in Engineering, 2005, 43(7): 801-814.

[7] Yue H M, Su X Y, Liu Y Z. Fourier transform profilometry based on composite structured light pattern[J]. Optics & Laser Technology, 2007, 39(6): 1170-1175.

    Yue H M, Su X Y, Liu Y Z. Fourier transform profilometry based on composite structured light pattern[J]. Optics & Laser Technology, 2007, 39(6): 1170-1175.

[8] Zhang Z, Zhang D, Peng X. Performance analysis of a 3D full-field sensor based on fringe projection[J]. Optics and Lasers in Engineering, 2004, 42(3): 341-353.

    Zhang Z, Zhang D, Peng X. Performance analysis of a 3D full-field sensor based on fringe projection[J]. Optics and Lasers in Engineering, 2004, 42(3): 341-353.

[9] Su X Y. Zhou W S, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6): 561-573.

    Su X Y. Zhou W S, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6): 561-573.

[10] Lei S, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 2009, 34(20): 3080-3082.

    Lei S, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 2009, 34(20): 3080-3082.

[11] Jia P, Kofman J, English C E. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement[J]. Optical Engineering, 2007, 46(8): 083201.

    Jia P, Kofman J, English C E. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement[J]. Optical Engineering, 2007, 46(8): 083201.

[12] Jia P, Kofman J, English C. Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy[J]. Applied Optics, 2007, 46(16): 3253-3262.

    Jia P, Kofman J, English C. Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy[J]. Applied Optics, 2007, 46(16): 3253-3262.

[13] Huang P S, Zhang S, Chiang F P. Trapezoidal phase-shifting method for three-dimensional shape measurement[J]. Optical Engineering, 2005, 44(12): 123601.

    Huang P S, Zhang S, Chiang F P. Trapezoidal phase-shifting method for three-dimensional shape measurement[J]. Optical Engineering, 2005, 44(12): 123601.

[14] Chen L, Quan C, Tay C J, et al. Shape measurement using one frame projected sawtooth fringe pattern[J]. Optics Communications, 2005, 246(4-6): 275-284.

    Chen L, Quan C, Tay C J, et al. Shape measurement using one frame projected sawtooth fringe pattern[J]. Optics Communications, 2005, 246(4-6): 275-284.

[15] 吴成东, 耿飞, 楚好, 等. 基于彩色条纹结构光的物体三维重建方法[J]. 东北大学学报(自然科学版), 2009, 30(7): 928-931.

    吴成东, 耿飞, 楚好, 等. 基于彩色条纹结构光的物体三维重建方法[J]. 东北大学学报(自然科学版), 2009, 30(7): 928-931.

    Wu C D, Geng F, Chu H, et al. 3-D reconstruction method based on structured light of colorful stripes for object[J]. Journal of Northeastern University (Natural Science), 2009, 30(7): 928-931.

    Wu C D, Geng F, Chu H, et al. 3-D reconstruction method based on structured light of colorful stripes for object[J]. Journal of Northeastern University (Natural Science), 2009, 30(7): 928-931.

[16] 白雪飞, 张宗华. 基于彩色条纹投影术的三维形貌测量[J]. 仪器仪表学报, 2017, 38(8): 1912-1925.

    白雪飞, 张宗华. 基于彩色条纹投影术的三维形貌测量[J]. 仪器仪表学报, 2017, 38(8): 1912-1925.

    Bai X F, Zhang Z H. 3D shape measurement based on colour fringe projection techniques[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1912-1925.

    Bai X F, Zhang Z H. 3D shape measurement based on colour fringe projection techniques[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1912-1925.

[17] Chen F, Brown G M, Song M. Overview of 3-D shape measurement using optical methods[J]. Optical Engineering, 2000, 39(1): 10-22.

    Chen F, Brown G M, Song M. Overview of 3-D shape measurement using optical methods[J]. Optical Engineering, 2000, 39(1): 10-22.

[18] Zhang Z H, Towers C E, Towers D P. Phase and colour calculation in colour fringe projection[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(6): S81-S86.

    Zhang Z H, Towers C E, Towers D P. Phase and colour calculation in colour fringe projection[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(6): S81-S86.

[19] Su W H. Color-encoded fringe projection for 3D shape measurements[J]. Optics Express, 2007, 15(20): 13167-13181.

    Su W H. Color-encoded fringe projection for 3D shape measurements[J]. Optics Express, 2007, 15(20): 13167-13181.

[20] 岳慧敏, 苏显渝, 李泽仁. 基于复合光栅投影的快速傅里叶变换轮廓术[J]. 光学学报, 2005, 25(6): 767-771.

    岳慧敏, 苏显渝, 李泽仁. 基于复合光栅投影的快速傅里叶变换轮廓术[J]. 光学学报, 2005, 25(6): 767-771.

    Yue H M, Su X Y, Li Z R. Improved fast Fourier transform profilometry based on composite grating[J]. Acta Optica Sinica, 2005, 25(6): 767-771.

    Yue H M, Su X Y, Li Z R. Improved fast Fourier transform profilometry based on composite grating[J]. Acta Optica Sinica, 2005, 25(6): 767-771.

[21] 肖焱山, 曹益平, 武迎春, 等. 基于傅里叶频谱分析的相位测量轮廓术系统Gamma非线性校正方法[J]. 光学学报, 2012, 32(12): 1212004.

    肖焱山, 曹益平, 武迎春, 等. 基于傅里叶频谱分析的相位测量轮廓术系统Gamma非线性校正方法[J]. 光学学报, 2012, 32(12): 1212004.

    Xiao Y S, Cao Y P, Wu Y C, et al. Gamma nonlinearity correction based on Fourier spectrum analysis for phase measuring profilometry[J]. Acta Optica Sinica, 2012, 32(12): 1212004.

    Xiao Y S, Cao Y P, Wu Y C, et al. Gamma nonlinearity correction based on Fourier spectrum analysis for phase measuring profilometry[J]. Acta Optica Sinica, 2012, 32(12): 1212004.

[22] Su X, Chen W. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 2001, 35(5): 263-284.

    Su X, Chen W. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 2001, 35(5): 263-284.

[23] Towers C E, Towers D P. Jones J D C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry[J]. Optics and Lasers in Engineering, 2005, 43(7): 788-800.

    Towers C E, Towers D P. Jones J D C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry[J]. Optics and Lasers in Engineering, 2005, 43(7): 788-800.

[24] Creath K. V phase-measurement interferometry techniques[J]. Progress in Optics, 1988, 26: 349-393.

    Creath K. V phase-measurement interferometry techniques[J]. Progress in Optics, 1988, 26: 349-393.

[25] Kemao Q. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics, 2004, 43(13): 2695-2702.

    Kemao Q. Windowed Fourier transform for fringe pattern analysis[J]. Applied Optics, 2004, 43(13): 2695-2702.

[26] Qian K. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[J]. Optics and Lasers in Engineering, 2007, 45(2): 304-317.

    Qian K. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[J]. Optics and Lasers in Engineering, 2007, 45(2): 304-317.

[27] Qian K, Fu Y, Liu Q, et al. Generalized three-dimensional windowed Fourier transform for fringe analysis[J]. Optics Letters, 2006, 31(14): 2121-2123.

    Qian K, Fu Y, Liu Q, et al. Generalized three-dimensional windowed Fourier transform for fringe analysis[J]. Optics Letters, 2006, 31(14): 2121-2123.

[28] Fernandez S, Gdeisat M A, Salvi J, et al. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets[J]. Optics Communications, 2011, 284(12): 2797-2807.

    Fernandez S, Gdeisat M A, Salvi J, et al. Automatic window size selection in Windowed Fourier Transform for 3D reconstruction using adapted mother wavelets[J]. Optics Communications, 2011, 284(12): 2797-2807.

[29] 黄静静, 陈文静, 苏显渝, 等. 小波变换在调制度测量轮廓术中的应用[J]. 光学学报, 2016, 36(7): 0707001.

    黄静静, 陈文静, 苏显渝, 等. 小波变换在调制度测量轮廓术中的应用[J]. 光学学报, 2016, 36(7): 0707001.

    Huang J J, Chen W J, Su X Y, et al. Application of wavelet transform in modulation measurement profilometry[J]. Acta Optica Sinica, 2016, 36(7): 0707001.

    Huang J J, Chen W J, Su X Y, et al. Application of wavelet transform in modulation measurement profilometry[J]. Acta Optica Sinica, 2016, 36(7): 0707001.

[30] Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics, 2004, 43(26): 4993-4998.

    Zhong J, Weng J. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics, 2004, 43(26): 4993-4998.

[31] Federico A, Kaufmann G H. Phase retrieval in electronic speckle pattern interferometry using the continuous wavelet transform[J]. Proceedings of SPIE, 2001, 4419: 162-165.

    Federico A, Kaufmann G H. Phase retrieval in electronic speckle pattern interferometry using the continuous wavelet transform[J]. Proceedings of SPIE, 2001, 4419: 162-165.

[32] Dursun A, Ozder S, Ecevit F N. Continuous wavelet transform analysis of projected fringe patterns[J]. Measurement Science and Technology, 2004, 15(9): 1768-1772.

    Dursun A, Ozder S, Ecevit F N. Continuous wavelet transform analysis of projected fringe patterns[J]. Measurement Science and Technology, 2004, 15(9): 1768-1772.

[33] Gdeisat M A, Abid A, Burton D R, et al. Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments[J]. Optics and Lasers in Engineering, 2009, 47(12): 1348-1361.

    Gdeisat M A, Abid A, Burton D R, et al. Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments[J]. Optics and Lasers in Engineering, 2009, 47(12): 1348-1361.

[34] Carmona R A, Hwang W L, Torrésani B. Characterization of signals by the ridges of their wavelet transforms[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2586-2590.

    Carmona R A, Hwang W L, Torrésani B. Characterization of signals by the ridges of their wavelet transforms[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2586-2590.

[35] Liu H, Cartwright A N, Basaran C. Moiré interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms[J]. Applied Optics, 2004, 43(4): 850-857.

    Liu H, Cartwright A N, Basaran C. Moiré interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms[J]. Applied Optics, 2004, 43(4): 850-857.

[36] Gdeisat M A, Burton D R, Lalor M J. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform[J]. Applied Optics, 2006, 45(34): 8722-8732.

    Gdeisat M A, Burton D R, Lalor M J. Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform[J]. Applied Optics, 2006, 45(34): 8722-8732.

[37] Ma J, Wang Z, Pan B, et al. Two-dimensional continuous wavelet transform for phase determination of complex interferograms[J]. Applied Optics, 2011, 50(16): 2425-2430.

    Ma J, Wang Z, Pan B, et al. Two-dimensional continuous wavelet transform for phase determination of complex interferograms[J]. Applied Optics, 2011, 50(16): 2425-2430.

[38] Huang L, Qian K, Pan B, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2010, 48(2): 141-148.

    Huang L, Qian K, Pan B, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2010, 48(2): 141-148.

[39] Servin M, Marroquin J L, Cuevas F J. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique[J]. Applied Optics, 1997, 36(19): 4540-4548.

    Servin M, Marroquin J L, Cuevas F J. Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique[J]. Applied Optics, 1997, 36(19): 4540-4548.

[40] Legarda-Sáenz R, Osten W, Jüptner W. Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns[J]. Applied Optics, 2002, 41(26): 5519-5526.

    Legarda-Sáenz R, Osten W, Jüptner W. Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns[J]. Applied Optics, 2002, 41(26): 5519-5526.

[41] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 2012, 50(8): 1097-1106.

    Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 2012, 50(8): 1097-1106.

[42] Wust C, Capson D W. Surface profile measurement using color fringe projection[J]. Machine Vision & Applications, 1991, 4(3): 193-203.

    Wust C, Capson D W. Surface profile measurement using color fringe projection[J]. Machine Vision & Applications, 1991, 4(3): 193-203.

[43] Pförtner A, Schwider J. Red-green-blue interferometer for the metrology of discontinuous structures[J]. Applied Optics, 2003, 42(4): 667-673.

    Pförtner A, Schwider J. Red-green-blue interferometer for the metrology of discontinuous structures[J]. Applied Optics, 2003, 42(4): 667-673.

[44] Huang P S, Zhang C, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 2003, 42(1): 163-168.

    Huang P S, Zhang C, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 2003, 42(1): 163-168.

[45] Chen H J, Zhang J, Lü D J, et al. 3-D shape measurement by composite pattern projection and hybrid processing[J]. Optics Express, 2007, 15(19): 12318-12330.

    Chen H J, Zhang J, Lü D J, et al. 3-D shape measurement by composite pattern projection and hybrid processing[J]. Optics Express, 2007, 15(19): 12318-12330.

[46] Su W H. Projected fringe profilometry using the area-encoded algorithm for spatially isolated and dynamic objects[J]. Optics Express, 2008, 16(4): 2590-2596.

    Su W H. Projected fringe profilometry using the area-encoded algorithm for spatially isolated and dynamic objects[J]. Optics Express, 2008, 16(4): 2590-2596.

[47] Harding K G. Coletta M P, van Dommelen C H. Color encoded moire contouring[J]. Proceedings of SPIE, 1988, 1005: 169-178.

    Harding K G. Coletta M P, van Dommelen C H. Color encoded moire contouring[J]. Proceedings of SPIE, 1988, 1005: 169-178.

[48] TajimaJ, IwakawaM. 3-D data acquisition by Rainbow Range Finder[C]∥International Conference on Pattern Recognition, June 16-21, 1990,Atlantic City, NJ, USA. New York: IEEE, 2002: 3944389.

    TajimaJ, IwakawaM. 3-D data acquisition by Rainbow Range Finder[C]∥International Conference on Pattern Recognition, June 16-21, 1990,Atlantic City, NJ, USA. New York: IEEE, 2002: 3944389.

[49] Geng Z J. Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems[J]. Optical Engineering, 1996, 35(2): 376-383.

    Geng Z J. Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems[J]. Optical Engineering, 1996, 35(2): 376-383.

[50] Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 2004, 37(4): 827-849.

    Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 2004, 37(4): 827-849.

[51] SkocajD, LeonardisA. Range image acquisition of objects with non-uniform albedo using structured light range sensor[C]∥Proceedings 15th International Conference on Pattern Recognition, Septemper 03-07, 2000, Barcelona, Spain. New York: IEEE, 2000: 778- 781.

    SkocajD, LeonardisA. Range image acquisition of objects with non-uniform albedo using structured light range sensor[C]∥Proceedings 15th International Conference on Pattern Recognition, Septemper 03-07, 2000, Barcelona, Spain. New York: IEEE, 2000: 778- 781.

[52] Liu W, Wang Z, Mu G, et al. Color-coded projection grating method for shape measurement with a single exposure[J]. Applied Optics, 2000, 39(20): 3504-3508.

    Liu W, Wang Z, Mu G, et al. Color-coded projection grating method for shape measurement with a single exposure[J]. Applied Optics, 2000, 39(20): 3504-3508.

[53] Zhong K, Li Z, Shi Y S, et al. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 2013, 51(11): 1213-1222.

    Zhong K, Li Z, Shi Y S, et al. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 2013, 51(11): 1213-1222.

[54] Wang Y, Li Y, Zhou J H, et al. A non-encoding structured light approach with infrared illumination for 3D large field shape measurement[J]. Optics & Laser Technology, 2013, 49: 28-32.

    Wang Y, Li Y, Zhou J H, et al. A non-encoding structured light approach with infrared illumination for 3D large field shape measurement[J]. Optics & Laser Technology, 2013, 49: 28-32.

[55] SakashitaK, YagiY, SagawaR, et al. A system for capturing textured 3D shapes based on one-shot grid pattern with multi-band camera and infrared projector[C]∥International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, May 16-19, 2011, Hangzhou, China. New York: IEEE, 2011: 49- 56.

    SakashitaK, YagiY, SagawaR, et al. A system for capturing textured 3D shapes based on one-shot grid pattern with multi-band camera and infrared projector[C]∥International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, May 16-19, 2011, Hangzhou, China. New York: IEEE, 2011: 49- 56.

[56] AkasakaK, SagawaR, YagiY. A sensor for simultaneously capturing texture and shape by projecting structured infrared light[C]∥6 th International Conference on 3-D Digital Imaging and Modeling, August 21-23, 2007, Montreal, QC, Canada. New York: IEEE , 2007: 375- 381.

    AkasakaK, SagawaR, YagiY. A sensor for simultaneously capturing texture and shape by projecting structured infrared light[C]∥6 th International Conference on 3-D Digital Imaging and Modeling, August 21-23, 2007, Montreal, QC, Canada. New York: IEEE , 2007: 375- 381.

[57] Ou P, Li B W, Wang Y J, et al. Flexible real-time natural 2D color and 3D shape measurement[J]. Optics Express, 2013, 21(14): 16736-16741.

    Ou P, Li B W, Wang Y J, et al. Flexible real-time natural 2D color and 3D shape measurement[J]. Optics Express, 2013, 21(14): 16736-16741.

[58] Jeong M S, Kim S W. Color grating projection moire with time-integral fringe capturing for high-speed 3-D imaging[J]. Optical Engineering, 2002, 41(8): 1912-1917.

    Jeong M S, Kim S W. Color grating projection moire with time-integral fringe capturing for high-speed 3-D imaging[J]. Optical Engineering, 2002, 41(8): 1912-1917.

[59] Huang P S, Hu Q, Jin F, et al. Color-encoded digital fringe projection technique for high-speed 3-D surface contouring[J]. Optical Engineering, 1999, 38(6): 1065-1071.

    Huang P S, Hu Q, Jin F, et al. Color-encoded digital fringe projection technique for high-speed 3-D surface contouring[J]. Optical Engineering, 1999, 38(6): 1065-1071.

[60] Chen S Y, Li Y F, Guan Q, et al. Real-time three-dimensional surface measurement by color encoded light projection[J]. Applied Physics Letters, 2006, 89(11): 111108.

    Chen S Y, Li Y F, Guan Q, et al. Real-time three-dimensional surface measurement by color encoded light projection[J]. Applied Physics Letters, 2006, 89(11): 111108.

[61] Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection[J]. Optics Express, 2006, 14(14): 6444-6455.

    Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection[J]. Optics Express, 2006, 14(14): 6444-6455.

[62] Ma M, Cao Y, He D, et al. Grayscale imbalance correcting method based on fringe normalization in RGB tricolor real-time three-dimensional measurement[J]. Optical Engineering, 2016, 55(3): 034102.

    Ma M, Cao Y, He D, et al. Grayscale imbalance correcting method based on fringe normalization in RGB tricolor real-time three-dimensional measurement[J]. Optical Engineering, 2016, 55(3): 034102.

[63] Chen K, Xi J, Yu Y, et al. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns[J]. Applied Optics, 2013, 52(30): 7360-7366.

    Chen K, Xi J, Yu Y, et al. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns[J]. Applied Optics, 2013, 52(30): 7360-7366.

[64] Li F, Zhang B, Shi G, et al. Single-shot dense depth sensing with color sequence coded fringe pattern[J]. Sensors, 2017, 17(11): 2558.

    Li F, Zhang B, Shi G, et al. Single-shot dense depth sensing with color sequence coded fringe pattern[J]. Sensors, 2017, 17(11): 2558.

[65] Cheng T, Du Q, Jiang Y. Color fringe projection profilometry using geometric constraints[J]. Optics Communications, 2017, 398: 39-43.

    Cheng T, Du Q, Jiang Y. Color fringe projection profilometry using geometric constraints[J]. Optics Communications, 2017, 398: 39-43.

[66] Yau ST, ZhangS, Gu X. Simultaneous three-dimensional geometry and color texture acquisition using single color camera: US8861833[P/OL].2014-10-14[2018-03-18]. https://patents.google.com/patent/US8861833B2/en.

    Yau ST, ZhangS, Gu X. Simultaneous three-dimensional geometry and color texture acquisition using single color camera: US8861833[P/OL].2014-10-14[2018-03-18]. https://patents.google.com/patent/US8861833B2/en.

[67] Bayer B E. Color imaging array: US3971065A[P/OL].1976-05-12[2018-03-18]. https://patents.google.com/patent/US3971065A/en.

    Bayer B E. Color imaging array: US3971065A[P/OL].1976-05-12[2018-03-18]. https://patents.google.com/patent/US3971065A/en.

[68] Mcphail M J, Fontaine A A, Krane M H, et al. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry[J]. Measurement Science and Technology, 2015, 26(2): 025302.

    Mcphail M J, Fontaine A A, Krane M H, et al. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry[J]. Measurement Science and Technology, 2015, 26(2): 025302.

[69] 戴美玲, 杨福俊, 杜晓磊, 等. 基于单幅彩色正弦光栅投影的三维形貌测量[J]. 光学学报, 2011, 31(7): 0712002.

    戴美玲, 杨福俊, 杜晓磊, 等. 基于单幅彩色正弦光栅投影的三维形貌测量[J]. 光学学报, 2011, 31(7): 0712002.

    Dai M L, Yang F J, Du X L, et al. Three-dimensional shape measurement based on single-shot color fringe projection of sinusoidal grating[J]. Acta Optica Sinica, 2011, 31(7): 0712002.

    Dai M L, Yang F J, Du X L, et al. Three-dimensional shape measurement based on single-shot color fringe projection of sinusoidal grating[J]. Acta Optica Sinica, 2011, 31(7): 0712002.

[70] Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are?[J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.

    Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are?[J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.

[71] Guo H, Zhang Z. Phase shift estimation from variances of fringe pattern differences[J]. Applied Optics, 2013, 52(26): 6572-6578.

    Guo H, Zhang Z. Phase shift estimation from variances of fringe pattern differences[J]. Applied Optics, 2013, 52(26): 6572-6578.

[72] Zhang Z, Towers D P, Towers C E. Snapshot color fringe projection for absolute three-dimensional metrology of video sequences[J]. Applied Optics, 2010, 49(31): 5947-5953.

    Zhang Z, Towers D P, Towers C E. Snapshot color fringe projection for absolute three-dimensional metrology of video sequences[J]. Applied Optics, 2010, 49(31): 5947-5953.

[73] Zhang Z, Towers C E, Towers D P. Robust color and shape measurement of full color artifacts by RGB fringe projection[J]. Optical Engineering, 2012, 51(2): 021109.

    Zhang Z, Towers C E, Towers D P. Robust color and shape measurement of full color artifacts by RGB fringe projection[J]. Optical Engineering, 2012, 51(2): 021109.

[74] 邹静娴, 吴荣治. 数字微镜器件(DMD)[J]. 液晶与显示, 2003, 18(6): 445-449.

    邹静娴, 吴荣治. 数字微镜器件(DMD)[J]. 液晶与显示, 2003, 18(6): 445-449.

    Zou J X, Wu R Z. Digital microscopy device[J]. Chinese Journal of Liquid Crystal and Displays, 2003, 18(6): 445-449.

    Zou J X, Wu R Z. Digital microscopy device[J]. Chinese Journal of Liquid Crystal and Displays, 2003, 18(6): 445-449.

[75] Pan J, Huang P S, Chiang F P. Color phase-shifting technique for three-dimensional shape measurement[J]. Optical Engineering, 2006, 45(1): 013602.

    Pan J, Huang P S, Chiang F P. Color phase-shifting technique for three-dimensional shape measurement[J]. Optical Engineering, 2006, 45(1): 013602.

[76] Zhang Z, Xu Y, Liu Y. Crosstalk reduction of a color fringe projection system based on multi-frequency heterodyne principle[J]. Proceedings of SPIE, 2013, 9046: 904607.

    Zhang Z, Xu Y, Liu Y. Crosstalk reduction of a color fringe projection system based on multi-frequency heterodyne principle[J]. Proceedings of SPIE, 2013, 9046: 904607.

[77] 李华, 杨帆, 杨华民, 等. 条纹颜色分离与聚类[J]. 光学精密工程, 2016, 24(5): 1206-1214.

    李华, 杨帆, 杨华民, 等. 条纹颜色分离与聚类[J]. 光学精密工程, 2016, 24(5): 1206-1214.

    Li H, Yang F, Yang H M, et al. Separation and clustering of structured light stripe color[J]. Optics and Precision Engineering, 2016, 24(5): 1206-1214.

    Li H, Yang F, Yang H M, et al. Separation and clustering of structured light stripe color[J]. Optics and Precision Engineering, 2016, 24(5): 1206-1214.

[78] Kinell L. Multichannel method for absolute shape measurement using projected fringes[J]. Optics and Lasers in Engineering, 2004, 41(1): 57-71.

    Kinell L. Multichannel method for absolute shape measurement using projected fringes[J]. Optics and Lasers in Engineering, 2004, 41(1): 57-71.

[79] HuY, XiJ, LiE, et al. A calibration approach for decoupling colour cross-talk using nonlinear blind signal separation network[C]∥Conference on Optoelectronic and Microelectronic Materials and Devices, December 08-10, 2004, Brisbane, Queensland, Australia. New York: IEEE, 2004: 265- 268.

    HuY, XiJ, LiE, et al. A calibration approach for decoupling colour cross-talk using nonlinear blind signal separation network[C]∥Conference on Optoelectronic and Microelectronic Materials and Devices, December 08-10, 2004, Brisbane, Queensland, Australia. New York: IEEE, 2004: 265- 268.

[80] Yang H H, Amari S, Cichocki A. Information-theoretic approach to blind separation of sources in non-linear mixture[J]. Signal Processing, 1998, 64(3): 291-300.

    Yang H H, Amari S, Cichocki A. Information-theoretic approach to blind separation of sources in non-linear mixture[J]. Signal Processing, 1998, 64(3): 291-300.

[81] Hu Y, Xi J, Chicharo J, et al. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection[J]. Journal of the Optical Society of America A, 2007, 24(8): 2372-2382.

    Hu Y, Xi J, Chicharo J, et al. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection[J]. Journal of the Optical Society of America A, 2007, 24(8): 2372-2382.

[82] Ma K, Zhang Q. A new color structured light coding method for three-dimensional measurement of isolated objects[J]. Proceedings of SPIE, 2010, 7790: 77901B.

    Ma K, Zhang Q. A new color structured light coding method for three-dimensional measurement of isolated objects[J]. Proceedings of SPIE, 2010, 7790: 77901B.

[83] Wang Z Y, Gao Q, Wang J J. A triple-exposure color PIV technique for pressure reconstruction[J]. Science China Technological Sciences, 2017, 60(1): 1-15.

    Wang Z Y, Gao Q, Wang J J. A triple-exposure color PIV technique for pressure reconstruction[J]. Science China Technological Sciences, 2017, 60(1): 1-15.

[84] Yu L, Pan B. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera[J]. Optics and Lasers in Engineering, 2017, 95: 17-25.

    Yu L, Pan B. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera[J]. Optics and Lasers in Engineering, 2017, 95: 17-25.

[85] Luo P F, Chao Y J, Sutton M A, et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics, 1993, 33(2): 123-132.

    Luo P F, Chao Y J, Sutton M A, et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics, 1993, 33(2): 123-132.

[86] Padilla M, Servin M, Garnica G. Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion[J]. Optics Express, 2016, 24(14): 15417-15428.

    Padilla M, Servin M, Garnica G. Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion[J]. Optics Express, 2016, 24(14): 15417-15428.

[87] Je C, Lee S W, Park R H. Color-phase analysis for sinusoidal structured light in rapid range imaging[J]. Computer Science, 2015, 1: 270-275.

    Je C, Lee S W, Park R H. Color-phase analysis for sinusoidal structured light in rapid range imaging[J]. Computer Science, 2015, 1: 270-275.

[88] Flores J L, Ferrari J A, Torales G G, et al. Color-fringe pattern profilometry using a generalized phase-shifting algorithm[J]. Applied Optics, 2015, 54(30): 8827-8834.

    Flores J L, Ferrari J A, Torales G G, et al. Color-fringe pattern profilometry using a generalized phase-shifting algorithm[J]. Applied Optics, 2015, 54(30): 8827-8834.

[89] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

[90] 邹海华, 赵宏, 周翔. 基于经验模式分解的三频彩色条纹投影轮廓术[J]. 光学学报, 2011, 31(8): 0812009.

    邹海华, 赵宏, 周翔. 基于经验模式分解的三频彩色条纹投影轮廓术[J]. 光学学报, 2011, 31(8): 0812009.

    Zou H H, Zhao H, Zhou X. Triples-frequency color-encoded fringe projection profilometry based on empirical mode decomposition[J]. Acta Optica Sinica, 2011, 31(8): 0812009.

    Zou H H, Zhao H, Zhou X. Triples-frequency color-encoded fringe projection profilometry based on empirical mode decomposition[J]. Acta Optica Sinica, 2011, 31(8): 0812009.

[91] Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85-95.

    Rilling G, Flandrin P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85-95.

[92] 徐永佳. 彩色三维成像系统的快速采集及颜色通道串扰消除研究[D]. 天津: 河北工业大学, 2014.

    徐永佳. 彩色三维成像系统的快速采集及颜色通道串扰消除研究[D]. 天津: 河北工业大学, 2014.

    Xu YJ. Study on the rapid acquisition and color channel crosstalk of color 3D imaging system[D]. Tianjin: Hebei University of Technology, 2014.

    Xu YJ. Study on the rapid acquisition and color channel crosstalk of color 3D imaging system[D]. Tianjin: Hebei University of Technology, 2014.

张宗华, 连晓洁, 高楠. 彩色复合条纹投影测量系统串扰消除方法[J]. 光学学报, 2018, 38(8): 0815005. Zonghua Zhang, Xiaojie Lian, Nan Gao. Crosstalk Elimination Method for Color Composite Fringe Projection Measuring Systems[J]. Acta Optica Sinica, 2018, 38(8): 0815005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!