Photonics Research, 2018, 6 (5): 05000346, Published Online: Jul. 18, 2018  

Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance Download: 680次

Author Affiliations
1 Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
2 Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Copy Citation Text

Steven H. Huang, Xuefeng Jiang, Bo Peng, Corey Janisch, Alexander Cocking, Şahin Kaya Özdemir, Zhiwen Liu, Lan Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance[J]. Photonics Research, 2018, 6(5): 05000346.

References

[1] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 2008, 5: 591-596.

[2] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1: 267-291.

[3] L. He, S. K. Ozdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6: 428-432.

[4] V. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 2013, 13: 3347-3351.

[5] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 2014, 9: 933-939.

[6] M. D. Baaske, F. Vollmer. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics, 2016, 10: 733-739.

[7] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25: 5616-5620.

[8] F. Vollmer, S. Arnold, D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 2008, 105: 20701-20704.

[9] K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, R. H. Goldsmith. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics, 2016, 10: 788-795.

[10] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2009, 4: 46-49.

[11] S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, Z.-Q. Tian. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater., 2016, 1: 016021.

[12] E. C. Le Ru, E. Blackie, M. Meyer, P. G. Etchegoint. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C, 2007, 111: 13794-13803.

[13] P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem., 2008, 1: 601-626.

[14] I. Alessandri, J. R. Lombardi. Enhanced Raman scattering with dielectrics. Chem. Rev., 2016, 116: 14921-14981.

[15] M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, S. A. Maier. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun., 2015, 6: 7915.

[16] V. R. Dantham, P. B. Bisht, C. K. R. Namboodiri. Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. J. Appl. Phys., 2011, 109: 103103.

[17] I. Alessandri. Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators. J. Am. Chem. Soc., 2013, 135: 5541-5544.

[18] I. Alessandri, N. Bontempi, L. E. Depero. Colloidal lenses as universal Raman scattering enhancers. RSC Adv., 2014, 4: 38152-38158.

[19] K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang. Enhanced Raman scattering by self-assembled silica spherical microparticles. J. Appl. Phys., 2007, 101: 063528.

[20] C. L. Du, J. Kasim, Y. M. You, D. N. Shi, Z. X. Shen. Enhancement of Raman scattering by individual dielectric microspheres. J. Raman Spectrosc., 2011, 42: 145-148.

[21] M. S. Anderson. Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres. Appl. Phys. Lett., 2010, 97: 131116.

[22] N. Bontempi, L. Carletti, C. De Angelis, I. Alessandri. Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces. Nanoscale, 2016, 8: 3226-3231.

[23] D. Qi, L. Lu, L. Wang, J. Zhang. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J. Am. Chem. Soc., 2014, 136: 9886-9889.

[24] Y. Yan, C. Xing, Y. Jia, Y. Zeng, Y. Zhao, Y. Jiang. Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection. Opt. Express, 2015, 23: 25854-25865.

[25] L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J. R. Lombardi. Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J. Phys. Chem. C, 2008, 112: 20095-20098.

[26] Y. Wang, W. Ruan, J. Zhang, B. Yang, W. Xu, B. Zhao, J. R. Lombardi. Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals. J. Raman Spectrosc., 2009, 40: 1072-1077.

[27] C. C. Evans, C. Liu, J. Suntivich. TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy. ACS Photon., 2016, 3: 1662-1669.

[28] D. H. Murgida, P. Hildebrandt. Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev., 2008, 37: 937-945.

[29] M. Mahmoudi, S. E. Lohse, C. J. Murphy, A. Fathizadeh, A. Montazeri, K. S. Suslick. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett., 2014, 14: 6-12.

[30] D. R. Ward, D. A. Corley, J. M. Tour, D. Natelson. Vibrational and electronic heating in nanoscale junctions. Nat. Nanotechnol., 2010, 6: 33-38.

[31] A. Kuhlicke, S. Schietinger, C. Matyssek, K. Busch, O. Benson. In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting. Nano Lett., 2013, 13: 2041-2046.

[32] L. K. Ausman, G. C. Schatz. Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons. J. Chem. Phys., 2008, 129: 054704.

[33] R.-S. Liu, W.-L. Jin, X.-C. Yu, Y.-C. Liu, Y.-F. Xiao. Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator. Phys. Rev. A, 2015, 91: 043836.

[34] M. Cai, K. Vahala. Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration. Opt. Lett., 2000, 25: 260-262.

[35] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 2014, 111: E3836-E3844.

[36] J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, A. Morand. High-Q silica microcavities on a chip: from microtoroid to microsphere. Appl. Phys. Lett., 2011, 99: 181123.

[37] X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, H. Wang. Chip-based silica microspheres for cavity optomechanics. Opt. Express, 2015, 23: 27260-27265.

[38] M. Tomes, T. Carmon. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett., 2009, 102: 113601.

[39] T. J. Kippenberg, S. M. Spillane, B. Min, K. J. Vahala. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quantum Electron., 2004, 10: 1219-1228.

[40] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12: 4742-4750.

[41] M. L. Gorodetsky, V. S. Ilchenko. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B, 1999, 16: 147-154.

[42] R. Symes, R. M. Sayera, J. P. Reid. Cavity enhanced droplet spectroscopy: principles, perspectives and prospects. Phys. Chem. Chem. Phys., 2004, 6: 474-487.

[43] X. Checoury, Z. Han, M. El Kurdi, P. Boucaud. Deterministic measurement of the Purcell factor in microcavities through Raman emission. Phys. Rev. A, 2010, 81: 033832.

[44] B. Petrak, N. Djeu, A. Muller. Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity. Phys. Rev. A, 2014, 89: 023811.

[45] H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hansch, D. Hunger. Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond. Phys. Rev. A, 2013, 88: 053812.

[46] T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, D. Hunger. Cavity-enhanced Raman microscopy of individual carbon nanotubes. Nat. Commun., 2016, 7: 12155.

[47] BalacS.FéronP., “Whispering gallery modes volume computation in optical micro-spheres,” Research Report <hal-01279396>, FOTON, 2014, .

[48] Ş. K. Özdemir, J. Zhu, L. He, L. Yang. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity. Phys. Rev. A, 2011, 83: 033817.

[49] M. Pelton. Modified spontaneous emission in nanophotonic structures. Nat. Photonics, 2015, 9: 427-435.

[50] B. L. Darby, P. G. Etchegoin, E. C. Le Ru. Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Phys. Chem. Chem. Phys., 2014, 16: 23895-23899.

[51] P. G. Etchegoin, E. C. Le Ru, M. Meyer. Evidence of natural isotopic distribution from single-molecule SERS. J. Am. Chem. Soc., 2009, 131: 2713-2716.

[52] RuE. L.EtchegoinP., Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008).

[53] ScullyM.ZubairyM. S., Quantum Optics (Cambridge University, 1997).

Steven H. Huang, Xuefeng Jiang, Bo Peng, Corey Janisch, Alexander Cocking, Şahin Kaya Özdemir, Zhiwen Liu, Lan Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance[J]. Photonics Research, 2018, 6(5): 05000346.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!