激光技术, 2018, 42 (3): 289, 网络出版: 2018-05-29  

零折射率超材料研究进展

Research progress of zero refractive index metamaterial
作者单位
华南师范大学 物理与电信工程学院, 广州 510006
引用该论文

许军, 陈溢杭. 零折射率超材料研究进展[J]. 激光技术, 2018, 42(3): 289.

XU Jun, CHEN Yihang. Research progress of zero refractive index metamaterial[J]. Laser Technology, 2018, 42(3): 289.

参考文献

[1] ENGHETA N, ZIOLKOWSKI R W.Metamaterials: physics and engineering explorations[M].Hoboken,USA: John Wiley & Sons Inc., 2006: 9-85.

[2] ELEFHERIADES G V, BALMAIN K G.Negative-refraction metamaterials: fundamental principles and applications[M].Hoboken,USA: John Wiley & Sons Inc., 2005: 5-55.

[3] CAI W, SHALAEV V M.Optical metamaterials:fundamentals and applications[M].New York, USA:Stanford University,2010:59-88.

[4] ANDEREGG M, FEUERBACHER B, FITTON B. Optically excited longitudinal plasmons in potassium[J]. Physical Review Letters, 1971, 27(23): 1565-1568.

[5] SPITZER W G, KLEINMAN D, WALSH D. Infrared properties of hexagonal silicon carbide[J]. Physical Review, 1959, 113(1): 127-132.

[6] KOROBKIN D,URZHUMOV Y, SHVETS G.Enhanced near-feld resolution in midinfrared using metamaterials[J].Journal of the Optical Society of America, 2006,B23(3):468-478 .

[7] CALDWELL J, LINDSAY L, GIANNINI V, et al.Low-loss,infrared and terahertz nanophotonics using surfacephonon polaritons[J].Nanophotonics,2015,4(1):44-68.

[8] KIM J. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas[J].Optica, 2016,3(3):339-346.

[9] NAIK G V, KIM J,BOLTASSEVA A. Oxides and nitrides as alternative plasmonic materials in the optical range[J].Optical Materials Express,2011,1(6):1090-1099.

[10] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J].Advanced Materials, 2013, 25(24):3264-3294.

[11] KINSEY N. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths[J]. Optica, 2015, 2(7): 616-622.

[12] OU J Y, SO J K , ADAMO G , et al. Ultraviolet and visible range plasmonics of a topological insulator[J]. Nature Communications, 2014,5:5139.

[13] KHURGIN J B. How to deal with the loss in plasmonics and metamaterials[J]. Nat Nanotechnol,2015, 10(1): 2-6.

[14] BROWN J. Artifcial dielectrics having refractive indices less than unity[J]. IEEE Xplore,1953,100(5):51-62 .

[15] ROTMAN W. Plasma simulation by artifcial dielectrics and parallel-plate media[J]. Institute of Radio Engineers Transactions on Antennas and Propagation,1962,10(1): 82-95.

[16] KING R J, TIEL D V, PARK K S. The synthesis of surface reactance using an artifcial dielectric[J].IEEE Transactions on Antennas and Propagation,1983,31(3): 471-476 .

[17] GIOVAMPAOLA C D, ENGHETA N. Plasmonics without negative dielectrics[J]. Physical Review, 2016, B93(19):195152.

[18] LI Y, LIBERAL I, GIOVAMPAOLA C D, et al.Waveguide metatronics:lumped circuitry based on structural dispersion[J]. Science Advances,2016, 2(6):e1501790.

[19] MAHMOUD A M, ENGHETA N.Wave-matterinteractions in epsilon-and-mu-near-zero structures[J]. Nature Communications, 2014, 5: 5638.

[20] SILVEIRINHA M, ENGHETA N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media[J]. Physical Review, 2007, B75(7): 075119.

[21] VESSEUR E J,COENEN T, CAGLAYAN H, et al. Experimental verification of n=0 structures for visible light[J]. Physical Review Letters,2013,110(1): 013902.

[22] PENDRY J B, HOLDEN A J, STEWART W J,et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996,76(25): 4773-4776.

[23] MOSES C A, ENGHETA N. Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions[J]. Wave Motion, 2001,34(3):301-317.

[24] BELOV P A, TRETYAKOV S A, VIITANEN A J. Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires[J]. Journal of Electromagnetic Waves and Applications, 2002, 16(8): 1153-1170.

[25] MASLOVSKI S I, TRETYAKOV S A, BELOV P A. Wire media with negative effective permittivity: a quasi-static model[J]. Microwave and Optical Technology Letters, 2002, 35(1): 47-51.

[26] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters,2000,84(18):4184-4187.

[27] BELOV P A. Strong spatial dispersion in wire media in the very large wavelength limit[J]. Physical Review, 2003, B67(11):113103.

[28] MAAS R. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths[J]. Nature Photonics, 2013, 7(11): 907-912.

[29] LEWIN L. The electrical constants of a material loaded with spherical particles[J]. Journal of the Institution of Electrical Engineers,1947,94(27): 65-68.

[30] O’BRIEN S, PENDRY J B. Photonic band-gap effects and magnetic activity in dielectric composites[J]. Journal of Physics Condensed Matter,2002,14(15):4035-4044.

[31] ZHAO Q, ZHOU J, ZHANG F,et al. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12(12): 60-69.

[32] WU Y, LI J, ZHANG Z Q, et al. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit[J]. Physical Review, 2006,B74(8):085111.

[33] MOITRA P. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 2013, 7(10): 791-795.

[34] HUANG X, LAI Y , HANG Zh,et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 2011, 10(8): 582-586.

[35] LI Y. On-chip zero-index metamaterials[J]. Nature Photonics, 2015, 9(11): 738-742.

[36] ZIOLKOWSKI R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction[J]. Physical Review, 2004, E70(2): 046608.

[37] CIATTONI A. Polariton excitation in epsilon-near-zero slabs: transient trapping of slow light[J]. Physical Review, 2013, A87(5):053853.

[38] JAVANI M H, STOCKMAN M I. Real and imaginary properties of epsilon-near-zero materials[J].Physical Review Letters, 2016, 117(10): 107404.

[39] SILVEIRINHA M G, ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials[J].Physical Review Letters, 2006, 97(15): 157403.

[40] SILVEIRINHA M G, ENGHETA N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends usingεnear-zero metamaterials[J]. Physical Review, 2007, B76(24):245109.

[41] EDWARDS B,AL A, YOUNG M E, et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide[J]. Physical Review Letters, 2008, 100(3): 033903.

[42] EDWARDS B,AL A, SILVEIRINHA M G,et al. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects[J].Journal of Applied Physics, 2009,105(4): 044905.

[43] AL A,SILVEIRINHA M G, ENGHETA N. Transmission-line analysis of epsilon-near-zero-filled narrow channels[J]. Physical Review, 2008, E78(1/2): 016604.

[44] MARCOS J S, SILVEIRINHA M G, ENGHETA N. μ-near-zero supercoupling[J]. Physical Review, 2015, B91(19):195112.

[45] NGUYEN V C, CHEN L, HALTERMAN K. Total transmission and total reflection by zero index metamaterials with defects[J]. Physical Review Letters, 2010,105(23): 233908.

[46] HAO J, YAN W, QIU M. Super-reflection and cloaking based on zero index metamaterial[J]. Applied Physics Letters, 2010, 96(10): 101109.

[47] ENOCH S. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902.

[48] AL A. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern[J]. Physical Review, 2007, B75(15):155410.

[49] AL A, ENGHETA N. Boosting molecular fluorescence with a plasmonic nanolauncher[J]. Physical Review Letters, 2009, 103(4): 043902.

[50] ENGHETA N, SALANDRINO A, AL A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors[J]. Physical Review Letters, 2005, 95(9): 095504 .

[51] ENGHETA N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 2007,317(5845):1698-1702.

[52] AL A, ENGHETA N. All optical metamaterial circuit board at the nanoscale[J]. Physical Review Letters, 2009, 103(14): 143902.

[53] AL A, ENGHETA N. Optical ‘shorting wires’ [J].Optics Express,2007,15(21): 13773-13782.

[54] EDWARDS B, ENGHETA N. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry[J].Physical Review Letters, 2012, 108(19): 193902.

[55] LIU R, ROBERTSC M , ZHONG Y, et al. Epsilon-near-zero photonics wires[J]. ACS Photonics, 2016,3(6): 1045-1052.

[56] RODRIGUEZ-FORTUNO F J, VAKIL A, ENGHETA N. Electric levitation using -near-zero metamaterials[J].Physical Review Letters, 2014, 112(3): 033902.

[57] LINDELL I V, SIHVOLA A H. Electromagnetic boundary and its realization with anisotropic metamaterial[J]. Physical Review, 2009, E79(2): 026604.

[58] RUMSEY V H. Some new forms of Huygens’ principle[J]. IEEE Xplore,1959,7(5):103-116.

[59] YAGHJIAN A D, MACI S. Alternative derivation of electromagnetic cloaks and concentrators[J]. New Journal of Physics,2007,10(11):115022.

[60] von NEUMANN J, WIGNER E. über merkwürdige diskrete eigenwerte[J].Physikalische Zeitschrift, 1929,30:467-470.

[61] CAPASSO F, SIRTORI C, FAIST J, et al. Observation of an electronic bound state above a potential well[J]. Nature,1992,358(6387):565-567.

[62] DEVANEY A J, WOLF E. Radiating and nonradiating classical current distributions and the felds they generate[J]. Physical Review,1973, D8(4):1044-1047.

[63] MARENGO E A, ZIOLKOWSKI R W. On the radiating and nonradiating components of scalar, electromagnetic and weak gravitational sources[J].Physical Review Letters,1999,83(17):3345-3349.

[64] MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902.

[65] LEE J. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 2012, 109(6): 067401.

[66] ERENTOK A, ZIOLKOWSKI R W. A hybrid optimization method to analyze metamaterial-based electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 731-741.

[67] LIBERAL I, ENGHETA N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities[J].Science Advances, 2016, 2(10):e1600987.

许军, 陈溢杭. 零折射率超材料研究进展[J]. 激光技术, 2018, 42(3): 289. XU Jun, CHEN Yihang. Research progress of zero refractive index metamaterial[J]. Laser Technology, 2018, 42(3): 289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!