光电工程, 2019, 46 (8): 180666, 网络出版: 2019-09-28   

红外和太赫兹电磁吸收超表面研究进展

Progress on infrared and terahertz electro-magnetic absorptive metasurface
作者单位
1 华南理工大学电子与信息学院,广东 广州 510640
2 华南农业大学工程学院,广东 广州 510642
引用该论文

邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666.

Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666.

参考文献

[1] 张健, 张文彦, 奚正平. 隐身吸波材料的研究进展[J]. 稀有金属材料与工程, 2008, 37(S4): 504–508.

    Zhang J, Zhang W Y, Xi Z P. Development of stealth radarwave absorbing materials[J]. Rare Metal Materials and Engineering, 2008, 37(S4): 504–508.

[2] 杨长胜, 程海峰, 李效东, 等. 智能隐身材料的研究现状[J]. 功能材料, 2005, 36(5): 643–647.

    Yang C S, Cheng H F, Li X D, et al. Present status of intelligent stealth material[J]. Journal of Functional Materials, 2005, 36(5): 643–647.

[3] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009.

[4] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084.

[5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

[6] Karvounis A, Gholipour B, MacDonald K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 051103.

[7] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932–4936.

[8] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212–26221.

[9] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.

[10] Caniou J. Passive Infrared Detection: Theory and Applications[M]. New York: Springer, 1999: 225.

[11] Jiang X D, Itzler M A, Ben-Michael R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895–905.

[12] Wang J L, Fang H H, Wang X D, et al. Recent progress on localized field enhanced two‐dimensional material photodetectors from ultraviolet—visible to infrared[J]. Small, 2017, 13(35): 1700894.

[13] 吴国安, 罗林保. 近红外光电探测器的发展与应用[J]. 物理, 2018, 47(3): 137–142.

    Wu G A, Luo L B. Development and application of near infrared photodetectors[J]. Physics, 2018, 47(3): 137–142.

[14] 于宏岩, 张强, 付淑芳, 等. 超表面吸收特性的研究进展[J]. 哈尔滨师范大学自然科学学报, 2017, 33(6): 33–38.

    Yu H Y, Zhang Q, Fu S F, et al. Research advances of absorption properties of metasurfaces[J]. Natural Science Journal of Harbin Normal University, 2017, 33(6): 33–38.

[15] Yoon G, So S, Kim M, et al. Electrically tunable metasurface perfect absorber for infrared frequencies[J]. Nano Convergence, 2017, 4(1): 36.

[16] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

[17] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998–8006.

[18] Astorino M D, Frezza F, Tedeschi N. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime[J]. Journal of Applied Physics, 2017, 121(6): 063103.

[19] Feng Q, Pu M B, Hu C G, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133–2135.

[20] Guo W L, Liu Y X, Han T C. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 2016, 24(18): 20586–20592.

[21] Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Letters, 2010, 10(3): 1082–1087.

[22] Jeong S, McDowell M T, Cui Y. Low-temperature self-catalytic growth of tin oxide nanocones over large areas[J]. ACS Nano, 2011, 5(7): 5800–5807.

[23] Zhu J, Hsu C M, Yu Z F, et al. Nanodome solar cells with efficient light management and self-cleaning[J]. Nano Letters, 2010, 10(6): 1979–1984.

[24] Pu M B, Hu C G, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413–17420.

[25] Ullah H, Khan A D, Noman M, et al. Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array[J]. Plasmonics, 2018, 13(2): 591–597.

[26] Li W, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959–7965.

[27] Huo D W, Zhang J W, Wang Y C, et al. Broadband perfect absorber based on tin-nanocone metasurface[J]. Nanomaterials, 2018, 8(7): 485.

[28] Deng H X, Li Z G, Stan L, et al. Broadband perfect absorber based on one ultrathin layer of refractory metal[J]. Optics Letters, 2015, 40(11): 2592–2595.

[29] Chirumamilla M, Roberts A S, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications[J]. Optical Materials Express, 2016, 6(8): 2704–2714.

[30] Aalizadeh M, Khavasi A, Butun B, et al. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure[J]. Scientific Reports, 2018, 8(1): 9162.

[31] Liu H W, Lu J P, Wang X R. Metamaterials based on the phase transition of VO2[J]. Nanotechnology, 2017, 29(2): 024002.

[32] Tabata H. Application of terahertz wave technology in the biomedical field[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1146–1153.

[33] Davies A G, Burnett A D, Fan W H, et al. Terahertz spectroscopy of explosives and drugs[J]. Materialstoday, 2008, 11(3): 18–26.

[34] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.

[35] Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 2012, 3: 780.

[36] Huang X J, Zhang X, Hu Z R, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307–312.

[37] Li X W, Liu H J, Sun Q B, et al. Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber[J]. Photonics and Nanostructures-Fundamentals and Applications, 2015, 15: 81–88.

[38] Pu M B, Wang M, Hu C G, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J]. Optics Express, 2012, 20(23): 25513–25519.

[39] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.

[40] Huang Y J, Luo J, Pu M B, et al. Catenary electromagnetics for ultra‐broadband lightweight absorbers and large‐scale flat antennas[J]. Advanced Science, 2019, 6(7): 1801691.

[41] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275.

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

[42] Zhang M, Zhang F, Ou Y, et al. Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface[J]. Nanophotonics, 2018, 8(1): 117–125.

[43] Chen H T, O'Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials[J]. Nature Photonics, 2008, 2(5): 295–298.

[44] Dicken M J, Aydin K, Pryce I M, et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Optics Express, 2009, 17(20): 18330–18339.

[45] Cao T, Zhang L, Simpson R E, et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial[J]. Journal of the Optical Society of America B, 2013, 30(6): 1580–1585.

[46] Cao T, Wei C W, Simpson R E, et al. Rapid phase transition of a phase-change metamaterial perfect absorber[J]. Optical Materials Express, 2013, 3(8): 1101–1110.

[47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191.

[48] Xiao S Y, Wang T, Liu Y B, et al. Tunable light trapping and absorption enhancement with graphene ring arrays[J]. Physical Chemistry Chemical Physics, 2016, 18(38): 26661–26669.

[49] Liu T T, Yi Z, Xiao S Y. Active control of near-field coupling in a terahertz metal-graphene metamaterial[J]. IEEE Photonics Technology Letters, 2017, 29(22): 1998–2001.

[50] Xiao S Y, Wang T, Liu T T, et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 2018, 126: 271–278.

[51] Neto A H C, Guinea F, Peres N, et al. The electronic properties of graphene[J]. Review of Modern Physics, 2009, 81(5934): 109.

[52] Cao S, Wang T S, Sun Q, et al. Graphene–silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband[J]. IEEE Photonics Technology Letters, 2018, 30(5): 475–478.

[53] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69–76.

    Tian X Y, Yin L X, Li D C. Current situation and trend of f abrication technologies f or three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69–76.

[54] Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved “H” array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011.

[55] Ziolkowski R W, Jin P, Lin C C. Metamaterial-inspired engineering of antennas[J]. Proceedings of the IEEE, 2011, 99(10): 1720–1731.

[56] Ibraheem I A, Koch M. Coplanar waveguide metamaterials: the role of bandwidth modifying slots[J]. Applied Physics Letters, 2007, 91(11): 113517.

[57] Fang X, MacDonald K F, Zheludev N I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor[J]. Light: Science & Applications, 2015, 4(5): e292.

[58] Pu M B, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246–2254.

[59] Luo X G. Subwavelength optical engineering with metasurface waves[J]. Advanced Optical Materials, 2018, 6(7): 1701201.

[60] Li X, Chen L W, Li Y, 等. 超表面三维彩色全息[J]. 光电工程, 2017, 44(1): 2.

    Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Opto-Electronic Engineering, 2017, 44(1): 2.

邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666. Deng Honglang, Zhou Shaolin, Cen Guanting. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electronic Engineering, 2019, 46(8): 180666.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!