Photonics Research, 2018, 6 (3): 03000157, Published Online: Jul. 10, 2018   

Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer Download: 629次

Author Affiliations
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
4 e-mail: jlzhao@nwpu.edu.cn
Copy Citation Text

Fajun Xiao, Wuyun Shang, Weiren Zhu, Lei Han, Malin Premaratne, Ting Mei, Jianlin Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 2018, 6(3): 03000157.

References

[1] M. Premaratne, M. Stockman. Theory and technology of SPASERs. Adv. Opt. Photon., 2017, 9: 79-128.

[2] J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. A. Belkin. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 2014, 511: 65-69.

[3] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 2012, 6: 737-748.

[4] J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, P. O. Brevet. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett., 2010, 10: 1717-1721.

[5] C. Ciraci, E. Poutrina, M. Scalora, D. R. Smith. Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface. Phys. Rev. B, 2012, 86: 115451.

[6] T. Onuta, M. Waegele, C. Dufort, W. L. Schaich, B. Dragnea. Optical field enhancement at cusps between adjacent nanoapertures. Nano Lett., 2007, 7: 557-564.

[7] T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, A. Leitenstorfer. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett., 2009, 103: 257404.

[8] A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, L. Dal Negro. Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt. Express, 2012, 20: 15797-15806.

[9] K. Thyagarajan, J. Butet, O. J. F. Martin. Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett., 2013, 13: 1847-1851.

[10] B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett., 2007, 7: 1251-1255.

[11] M. W. Klein, C. Enkrich, M. Wegener, S. Linden. Second-harmonic generation from magnetic metamaterials. Science, 2006, 313: 502-504.

[12] S. Linden, F. B. P. Niesler, J. Forstner, Y. Grynko, T. Meier, M. Wegener. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett., 2012, 109: 015502.

[13] H. Husu, R. Siikanen, J. Makitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen. Metamaterials with tailored nonlinear optical response. Nano Lett., 2012, 12: 673-677.

[14] B. Wang, R. Wang, R. J. Liu, X. Lu, J. Zhao, Z. Li. Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. Sci. Rep., 2013, 3: 2358.

[15] S. Lan, S. P. Rodrigues, Y. Cui, L. Kang, W. Cai. Electrically tunable harmonic generation of light from plasmonic structures in electrolytes. Nano Lett., 2016, 16: 5074-5079.

[16] K. O. Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 2015, 14: 379-383.

[17] V. K. Valev, A. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. Moshchalkov, T. Verbiest. Linearly polarized second harmonic generation microscopy reveals chirality. Opt. Express, 2010, 18: 8286-8293.

[18] G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, M. Kauranen. Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams. Opt. Express, 2013, 21: 21918-21923.

[19] J. Butet, O. J. F. Martin. Nonlinear plasmonic nanorulers. ACS Nano, 2014, 8: 4931-4939.

[20] J. Butet, I. Russierantoine, C. Jonin, N. Lascoux, E. Benichou, P. Brevet. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett., 2012, 12: 1697-1701.

[21] G. F. Walsh, L. Dal Negro. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett., 2013, 13: 3111-3117.

[22] H. Aouani, M. Navarrocia, M. Rahmani, T. P. H. Sidiropoulos, M. H. Hong, R. F. Oulton, S. A. Maier. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett., 2012, 12: 4997-5002.

[23] S. Liu, E. S. P. Leong, G. Li, Y. Hou, J. Deng, J. Teng, H. C. Ong, D. Y. Lei. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano, 2016, 10: 1442-1453.

[24] F. Xiao, W. Zhu, W. Shang, T. Mei, M. Premaratne, J. Zhao. Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express, 2015, 23: 3236-3244.

[25] J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, N. J. Halas. Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett., 2012, 12: 1058-1062.

[26] A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, U. Levy. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation. ACS Nano, 2014, 8: 4969-4974.

[27] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1985).

[28] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 2009, 1: 1-57.

[29] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419-422.

[30] ShenY. R., The Principles of Nonlinear Optics (Wiley, 1973).

[31] J. I. Dadap, J. Shan, K. B. Eisenthal, T. F. Heinz. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett., 1999, 83: 4045-4048.

[32] D. Krause, C. W. Teplin, C. T. Rogers. Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum. J. Appl. Phys., 2004, 96: 3626-3634.

[33] S. Tang, D. Cho, H. Xu, W. Wu, Y. R. Shen, L. Zhou. Nonlinear responses in optical metamaterials: theory and experiment. Opt. Express, 2011, 19: 18283-18293.

[34] F. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn. Dark plasmonic breathing modes in silver nanodisks. Nano Lett., 2012, 12: 5780-5783.

[35] M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, N. Liu. Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano, 2011, 5: 2042-2050.

[36] J. Ye, F. Wen, J. Lassiter, H. Sobhani, P. Van Dorpe, P. Nordlander, N. Halas. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett., 2012, 12: 1660-1667.

Fajun Xiao, Wuyun Shang, Weiren Zhu, Lei Han, Malin Premaratne, Ting Mei, Jianlin Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 2018, 6(3): 03000157.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!