Photonics Research, 2018, 6 (6): 06000630, Published Online: Jul. 2, 2018  

Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal

Author Affiliations
Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Copy Citation Text

Jinhua Li, Xiangdong Zhang. Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal[J]. Photonics Research, 2018, 6(6): 06000630.

References

[1] B. A. van Tiggelen. Transverse diffusion of light in Faraday-active media. Phys. Rev. Lett., 1995, 75: 422-424.

[2] G. L. J. A. Rikken, B. A. van Tiggelen. Observation of magnetically induced transverse diffusion of light. Nature, 1996, 381: 54-55.

[3] A. Sparenberg, G. L. J. A. Rikken, B. A. van Tiggelen. Observation of photonic magnetoresistance. Phys. Rev. Lett., 1997, 79: 757-760.

[4] G. L. J. A. Rikken, A. Sparenberg, B. A. van Tiggelen. Photonic magneto-transport. Physica B, 1998, 246–247: 188-194.

[5] S. Wiebel, A. Sparenberg, G. L. J. A. Rikken, D. Lacoste, B. A. van Tiggelen. Photonic Hall effect in absorbing media. Phys. Rev. E, 2000, 62: 8636-8639.

[6] F. C. MacKintosh, S. John. Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Phys. Rev. B, 1988, 37: 1884-1897.

[7] B. A. van Tiggelen, R. Maynard, T. M. Nieuwenhuizen. Theory for multiple light scattering from Rayleigh scatterers in magnetic fields. Phys. Rev. E, 1996, 53: 2881-2908.

[8] D. Lacoste, B. A. van Tiggelen, G. L. J. A. Rikken, A. Sparenberg. Optics of a Faraday-active Mie sphere. J. Opt. Soc. Am. A, 1998, 15: 1636-1642.

[9] Z. Lin, S. T. Chui. Electromagnetic scattering by optically anisotropic magnetic particle. Phys. Rev. E, 2004, 69: 056614.

[10] M. Briane, G. W. Milton. Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient. Arch. Ration. Mech. Anal., 2009, 193: 715-736.

[11] C. Kern, M. Kadic, M. Wegener. Experimental evidence for sign reversal of the Hall coefficient in three-dimensional metamaterials. Phys. Rev. Lett., 2017, 118: 016601.

[12] M. Zhang, X. Zhang. Electric field tunable photonic Hall effect with liquid crystals. Phys. Lett. A, 2014, 378: 1571-1577.

[13] Y. L. Xu. Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 1995, 34: 4573-4588.

[14] X. D. Wang, X.-G. Zhang, Q. L. Yu, B. N. Harmon. Multiple-scattering theory for electromagnetic waves. Phys. Rev. B, 1993, 47: 4161-4167.

[15] A. Moroz. Density-of-states calculations and multiple-scattering theory for photons. Phys. Rev. B, 1995, 51: 2068-2081.

[16] F. J. García de Abajo. Multiple scattering of radiation in clusters of dielectrics. Phys. Rev. B, 1999, 60: 6086-6102.

[17] J. Ng, Z. F. Lin, C. T. Chan, P. Sheng. Photonic clusters formed by dielectric microspheres: numerical simulations. Phys. Rev. B, 2005, 72: 085130.

[18] Q. Zhao, L. Kang, B. Li, J. Zhou. Tunable negative refraction in nematic liquid crystals. Appl. Phys. Lett., 2006, 89: 221918.

[19] J. Dintinger, B.-J. Tang, X. Zeng, F. Liu, T. Kienzler, G. H. Mehl, G. Ungar, C. Rockstuhl, T. Scharf. A self-organized anisotropic liquid-crystal plasmonic metamaterial. Adv. Mater., 2013, 25: 1999-2004.

[20] J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, J. Feldmann. Electrically controlled light scattering with single metal nanoparticles. Appl. Phys. Lett., 2002, 81: 171-173.

[21] J. W. Taylor, L. K. Kurihara, L. J. Martinez-Miranda. Interaction of a bi-molecular liquid crystal film with functionalized nanoparticles. Appl. Phys. Lett., 2012, 100: 173115.

[22] H. Takeda, K. Yoshino. Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals. Phys. Rev. E, 2003, 67: 056607.

[23] Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, J.-C. Lee. Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett., 2001, 79: 15-17.

[24] D. W. Berreman. Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells. J. Opt. Soc. Am., 1973, 63: 1374-1380.

[25] BohrenC. F.HuffmanD. R., Absorption and Scattering of Light by Small Particles (Wiley, 1983).

[26] StrattonA., Electromagnetic Theory (McGraw-Hill, 1941).

[27] B. Friedman, J. Russek. Addition theorems for spherical waves. Q. Appl. Math., 1954, 12: 13-23.

[28] A. Stein. Addition theorems for spherical wave functions. Q. Appl. Math., 1961, 19: 15-24.

[29] O. R. Cruzan. Translational addition theorems for spherical vector wave functions. Q. Appl. Math., 1962, 20: 33-40.

[30] ChewW. C., Waves and Fields in Inhomogeneous Media (IEEE, 1995).

[31] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt., 1985, 24: 4493-4499.

[32] J. A. Scholl, A. l. Koh, J. A. Dionne. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483: 421-427.

[33] T. Christensen, W. Yan, S. Raza, A.-P. Jauho, N. A. Mortensen, M. Wubs. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano, 2014, 8: 1745-1758.

[34] N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi. A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun., 2014, 5: 3809.

[35] C. David, F. J. García de Abajo. Spatial nonlocality in the optical response of metal nanoparticles. J. Phys. Chem. C, 2011, 115: 19470-19475.

[36] J. Xu, X. Zhang. Second harmonic generation in three-dimensional structures based on homogeneous centrosymmetric metallic spheres. Opt. Express, 2012, 20: 1668-1684.

Jinhua Li, Xiangdong Zhang. Electric field tunable strong transverse light current from nanoparticles embedded in liquid crystal[J]. Photonics Research, 2018, 6(6): 06000630.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!