中国光学, 2017, 10 (1): 1, 网络出版: 2017-02-09   

电磁编码超材料的理论与应用

Theory and application of coding metamaterials
作者单位
东南大学 信息科学与工程学院,江苏 南京 210096
引用该论文

张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1): 1.

ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1.

参考文献

[1] CUI T J,SMITH D R,LIU R. Metamaterials: Theory, Design, and Applications[M]. New York: Springer Science & Business Media,2009.

[2] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi,1968,10: 509-514.

[3] SHELBY R A,SMITH D R,SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science,2001,292: 77-79.

[4] PENDRY J B. Negative refraction makes a perfect lens[J]. Physics Review Letter,2000,85: 3966-3969.

[5] ENOCH S,TAYEB G,SABOUROUX P,et al.. A metamaterial for directive emission[J]. Physics Review Letter,2002,89: 213902.

[6] SILVEIRINHA M,ENGHETA N. Tunneling of Electromagnetic energy through subwavelength channels and bends using-near-zero materials[J]. Physics Review Letter,2006,97: 157403.

[7] LIU R,CHENG Q,HAND T,et al.. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physics Review Letter,2008,100: 023903.

[8] ZHANG B,LUO Y,LIU X,et al.. Macroscopic invisibility cloak for visible light[J]. Physics Review Letter,2011; 106: 033901.

[9] CHEN X,LUO Y,ZHANG J,et al.. Macroscopic invisibility cloaking of visible light[J]. Nature Communication,2011,2: 176.

[10] CHENG Q,JIANG W X,CUI T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physics Review Letter,2012,108: 213903.

[11] BLANCO A,CHOMSKI E,GRABTCHAK S,et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature,2000,405: 437-440.

[12] SAKODA K. Optical Properties of Photonic Crystals[M]. New York: Springer Science & Business Media,2005.

[13] PENDRY J B,SCHURIG D,SMITH D R. Controlling electromagnetic fields[J]. Science,2006,312: 1780-1782.

[14] LEONHARDT U. Optical conformal mapping[J]. Science,2006,312: 1777-1780.

[15] SCHURIG D,MOCK J J,JUSTICE B J,et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science,2006,314: 977-980.

[16] LI J,PENDRY J B. Hiding under the carpet: a new strategy for cloaking[J]. Physics Review Letter,2008,101: 203901.

[17] LIU R,JI C,MOCK J J,et al.. Broadband ground-plane cloak[J]. Science,2009,323: 366-369.

[18] ERGIN T,STENGER N,BRENNER P,et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science,2010,328: 337-339.

[19] MA H F,CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication,2010,1: 21.

[20] JIANG W X,CUI T J,CHENG Q,et al.. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letter,2008,92: 264101.

[21] LAI Y,NG J,CHEN H,et al.. Illusion optics: the optical transformation of an object into another object[J]. Physics Review Letter,2009,102: 253902.

[22] JIANG W X,CUI T J,YANG X M,et al.. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letter,2011,98: 204101.

[23] KUNDTZ N,SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials,2010,9: 129 132.

[24] MA H F,CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication,2010,1: 21.

[25] SMITH D R,MOCK J J,STARR A F,et al.. Gradient index metamaterials[J]. Physics Review E,2005,71: 036609.

[26] HAO Y,MITTRA R. FDTD Modeling of Metamaterials: Theory and Applications[M]. Boston: Artech House,2009.

[27] CHEN X,M A HF,ZOU X Y,et al.. Three-dimensional broadband and highdirectivity lens antenna made of metamaterials[J]. J. Applied Physics,2011,110: 044904.

[28] LIER E,WERNER D H,SCARBOROUGH C P,et al.. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials,2011,10: 216-222.

[29] JIANG W X,QIU C W,HAN T C,et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials,2013,25: 6963-6968.

[30] YANG X M,ZHOU X Y,CHENG Q,et al.. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letter,2010,35: 808-810.

[31] SILVA A,MONTICONE F,CASTALDI G,et al.. Performing mathematical operations with metamaterials[J]. Science,2014,343: 160-163.

[32] YU N,GENEVET P,KATS M A,et al.. Light propagation with phasediscontinuities: generalized laws of reflection and refraction[J]. Science,2011,334: 333-337.

[33] NI X,EMANI N K,KILDISHEV A V,et al.. Broadband light bending with plasmonicnanoantennas[J]. Science,2012,335: 427.

[34] SUN S,HE Q,XIAO S,et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials,2012,11: 426-431.

[35] YIN X,YE Z,RHO J,et al.. Photonic spin hall effect at metasurfaces[J]. Science,2013,339: 1405-1407.

[36] LIN J,MUELLER J P,WANG Q,et al.. Polarization-controlled tunable directional coupling of surface plasmonpolaritons[J]. Science,2013,340: 331-334.

[37] MIROSHNICHENKO A E,KIVSHAR Y S. Polarization traffic control for surface plasmons[J]. Science,2013,340: 283-284.

[38] GRADY N K,HEYES J E,CHOWDHURY D R,et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science,2013,340: 1304-1307.

[39] QU C,MA S J,HAO J M,et al.. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters,2015,115(23): 235503.

[40] CUI T J,QI M Q,WAN X,et al.. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Application,2014,3: e218.

[41] ZHU B O,ZHAO J M,FENG Y J. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports,2013,3: 3059.

[42] MIAO Z,WU Q,LI X,et al.. Widely tunable terahertz phase modulation with gate-controlled graphenemetasurfaces[J]. Physical Review X,2015,5(4): 041027.

[43] WAN X,QI M Q,CHEN T Y,et al.. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports,2016,6: 20663.

[44] XU H X,SUN S,TANG S,et al.. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports,2016,6: 27503.

[45] GIOVAMPAOLA C D,ENGHETA N. Digital metamaterials[J]. Nature Materials,2014,14: 1115-1121.

[46] GAO L H,CHENG Q,YANG J,et al.. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Application,2015,4: e324.

[47] LIU S,CUI T J,XU Q,et al.. Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves[J]. Light: Science & Application,2015,5: e16076.

[48] PAQUAY M,IRIARTE JC,EDERRA I,et al.. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation,2007,55: 3630-3638.

[49] MAIT J N. Design of binary-phase and multiphase Fourier gratings for array generation[J]. J. Optical Society of America A,1990,7: 1514-1528.

[50] WANG M R,SU H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics,1998,37: 7568-7576.

[51] COOMBER S D,CAMERON C D,HUGHES J R,et al.. Optically addressed spatial light modulators for replaying computer-generated holograms[J]. Proc SPIE,2001,4457: 9-19.

[52] WATTS C M,SHREKENHAMER D,MONTOYA J,et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics,2014,8(8): 605-609.

[53] SHREKENHAMER D,MONTOYA J,KRISHNA S,et al.. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials,2013,1(12): 905-909.

[54] SAVO S,SHREKENHAMER D,PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials,2014,2: 275-279.

[55] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Applied Physics Letter,2009,94: 213511.

[56] KARL N,REICHEL K,CHEN H T,et al.. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range[J]. Applied Physics Letter,2014,104: 091115.

[57] MAXFIELD C. The Design Warrior′s Guide to FPGAs: Devices, Tools and Flows[M]. Oxford: Elsevier,2004.

[58] LANDY N I,SAJUYIGBE S,MOCK J J,et al.. Perfect metamaterial absorber[J]. Physics Review Letter,2008,100: 207402.

[59] CHEN H T,ZHOU J,O′HARA J F,et al.. Antireflection coating using metamaterials and identification of its mechanism[J]. Physics Review Letter,2010,105: 073901.

张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1): 1. ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!