光电工程, 2019, 46 (1): 180556, 网络出版: 2019-01-18   

基于激光陀螺组合体的船体角形变测量方法

Ship angular flexure measurement method based on ring laser gyro units
作者单位
国防科技大学前沿交叉学科学院, 湖南 长沙 410073
摘要
本文提出了一种新的改进的姿态匹配方法用于激光陀螺组合体测量船体角变形, 该方法的Kalman滤波观测量直接包括待测的船体角形变和“相对姿态误差”项, “相对姿态误差”项对单个激光陀螺组合体的陀螺零偏不敏感, 主要源自于两套激光陀螺组合体的陀螺漂移差值和初始船体角形变。此外, 考虑到船体静态角形变的缓变特征, 船体静态变形角速度可建模为随机游走过程。仿真结果表明, 本文提出的简化的姿态匹配方法能跟踪日照引起的准静态缓变角变形和船体机动等因素引起的短周期大幅角变形。该方法也经过了多条舰船的实船试验验证, 船体角变形的测量精度优于20″。
Abstract
For ship angular flexure measurement based on the ring laser gyro units, a simplified attitude matching method has been proposed, where the Kalman filter observation provides direct measurement of the desired ship angular flexure plus the ‘relative attitude’ term. The ‘relative attitude’, insensitive to the gyro biases of each LGU, arises from the gyro bias difference and initial ship angular flexure. Additionally, considering its slow-varying characteristics, the angular rate of the quasi-static angular flexure should be modeled as random walks. Numerical simulations validate that the simplified attitude matching method can track both the slow-varying angular flexure caused by sunshine heating and the short-time large-magnitude angular flexure caused by factors such as helm’s operation. According to full-scale experiments in several actual ships, the proposed method can reach an accuracy of 20″.
参考文献

[1] Titterton D H, Weston J L. Strapdown Inertial Navigation Technology[M]. London: Peter Peregrinus Ltd, 1997.

[2] Mochalov A V, Kazantsev A V. Use of ring laser units for measurement of moving object deformations[J]. Proceedings of SPIE, 2002, 4680: 85–92.

[3] Carlson N A, Kelley R T, Beming S L. Differential inertial filter for dynamic sensor alignment[C]//Proceedings of the 1994 National Technical Meeting of The Institute of Navigation, San Diego, CA, 1994: 341–351.

[4] Kaiser J, Beck G, Berning S. Vital advanced inertial network[C]//Proceedings of the IEEE 1998 Position Location and Navigation Symposium, Palm Springs, CA, USA, 1998: 61–68.

[5] Kelley R T, Carlson N A, Berning S. Integrated inertial network[C]//Proceedings of 1994 IEEE Position, Location and Navigation Symposium, Las Vegas, NV, USA, 1994: 439–446.

[6] Joon L, You-Chol L. Transfer alignment considering measurement time delay and ship body flexure[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 195–203.

[7] 姜广文. 像机链位姿传递摄像测量方法及船体变形测量研究[D]. 长沙: 国防科学技术大学, 2010.

    Jiang G W. Study on pose relay videometrics method with camera-series and ship deformations measurement[D]. Changsha: National University of Defense Technology, 2010.

[8] 汪顺亭, 汪湛清, 朱昀炤, 等. 船体变形的监测方法及其对航向姿态信息的修正[J]. 中国惯性技术学报, 2007, 15(6): 635–641.

    Wang S T, Wang Z Q, Zhu Y Z, et al. Monitoring on ship hull deformation and correction for heading & attitude information[J]. Journal of Chinese Inertial Technology, 2007, 15(6): 635–641.

[9] 万德钧, 刘玉锋. 消减舰船变形的影响和为全舰提供高精度姿态基准[J]. 中国惯性技术学报, 2005, 13(4): 77–82.

    Wan D J, Liu Y F. Summary on removing influence of ship deformation and providing accurate attitude references for warship[J]. Journal of Chinese Inertial Technology, 2005, 13(4): 77–82.

[10] 郑佳兴, 秦石乔, 王省书, 等. 基于姿态匹配的船体形变测量方法[J]. 中国惯性技术学报, 2010, 18(2): 175–180.

    Zheng J X, Qin S Q, Wang X S, et al. Attitude matching method for ship deformation measurement[J]. Journal of Chinese Inertial Technology, 2010, 18(2): 175–180.

[11] 郑佳兴, 秦石乔, 王省书, 等. 考虑准静态缓变量的船体角形变测量[J]. 中国惯性技术学报, 2011, 19(1): 6–10.

    Zheng J X, Qin S Q, Wang X S, et al. Ship hull angular deformation measurement taking slow-varying quasi-static component into account[J]. Journal of Chinese Inertial Technology, 2011, 19(1): 6–10.

[12] Schneider A M. Kalman filter formulations for transfer alignment of strapdown inertial units[J]. Navigation, 1983, 30(1): 72–89.

[13] Day D L, Arruda J. Measuring structural flexure to improve precision tracking[J]. ADA364862, 1999.

[14] Shin E H, El-Sheimy N. An unscented Kalman filter for in-motion alignment of low-cost IMUs[C]//Proceedings of the PLANS 2004. Position Location and Navigation Symposium, Monterey, CA, USA, 2004: 273–279.

[15] 刘文涛, 刘洁瑜, 沈强. 光纤陀螺随机误差的集成建模及滤波处理[J]. 光电工程, 2018, 45(10): 180082.

    Liu W T, Liu J Y, Shen Q. Integrated modeling and filtering of fiber optic gyroscope's random errors[J]. Opto-Electronic Engineering, 2018, 45(10): 180082.

郑佳兴, 戴东凯, 吴伟, 周金鹏. 基于激光陀螺组合体的船体角形变测量方法[J]. 光电工程, 2019, 46(1): 180556. Zheng Jiaxing, Dai Dongkai, Wu Wei, Zhou Jinpeng. Ship angular flexure measurement method based on ring laser gyro units[J]. Opto-Electronic Engineering, 2019, 46(1): 180556.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!