光学学报, 2019, 39 (8): 0827001, 网络出版: 2019-08-07   

基于腔电光力系统增强罗兰C台间同步精度问题研究 下载: 986次

Research on Enhancing Synchronization Precision Between Roland C Stations Based on Cavity Electro-Opto-Mechanical System
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
引用该论文

陈超, 吴德伟, 杨春燕, 李响, 罗均文. 基于腔电光力系统增强罗兰C台间同步精度问题研究[J]. 光学学报, 2019, 39(8): 0827001.

Chao Chen, Dewei Wu, Chunyan Yang, Xiang Li, Junwen Luo. Research on Enhancing Synchronization Precision Between Roland C Stations Based on Cavity Electro-Opto-Mechanical System[J]. Acta Optica Sinica, 2019, 39(8): 0827001.

参考文献

[1] 汪捷, 严建华, 李川章. 国际eLoran发展现状与我国罗兰C现代化的技术分析[J]. 海洋测绘, 2009, 29(3): 79-82.

    Wang J, Yan J H, Li C Z. Foreign situation of enhanced Loran and analyses of the modernization reconstruction of domestic Loran-C system[J]. Hydrographic Surveying and Charting, 2009, 29(3): 79-82.

[2] 严建华, 牛会丰, 赵立霞. 影响罗兰C系统定位定时精度因素的实测分析[J]. 海洋测绘, 2014, 34(4): 69-72.

    Yan J H, Niu H F, Zhao L X. Measurement analysis of factors influencing Loran C positioning and timing accuracy[J]. Hydrographic Surveying and Charting, 2014, 34(4): 69-72.

[3] 刘辛涛, 胡安平. 长波导航系统拓展应用研究[J]. 现代导航, 2013, 4(2): 116-119.

    Liu X T, Hu A P. Research on application extension of long wave navigation system[J]. Modern Navigation, 2013, 4(2): 116-119.

[4] 侯飞雁, 权润爱, 邰朝阳, 等. 量子时间同步协议研究进展回顾[J]. 时间频率学报, 2014, 37(2): 65-73.

    Hou F Y, Quan R A, Tai Z Y, et al. Review of progress in quantum synchronization protocols research[J]. Journal of Time and Frequency, 2014, 37(2): 65-73.

[5] Giovannetti V, Lloyd S. MacCone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

[6] 宋培帅, 马静, 马哲, 等. 量子定位导航技术研究与发展现状[J]. 激光与光电子学进展, 2018, 55(9): 090003.

    Song P S, Ma J, Ma Z, et al. Research and development status of quantum navigation technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 090003.

[7] Giovannetti V, Lloyd S. MacCone L, et al. Clock synchronization with dispersion cancellation[J]. Physical Review Letters, 2001, 87(11): 117902.

[8] Giovannetti V, Lloyd S. MacCone L, et al. Conveyor-belt clock synchronization[J]. Physical Review A, 2004, 70(4): 043808.

[9] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 2004, 85(13): 2655-2657.

[10] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

[11] Bahder TB, Golding WM. Clock synchronization based on second-order coherence of entangled photons[C]. AIP Conference Proceedings, 2004, 734: 395- 398.

[12] 吴德伟, 李响, 杨春燕, 等. 基于超导约瑟夫森结的双路径量子纠缠微波信号研究进展[J]. 量子电子学报, 2017, 34(1): 1-8.

    Wu D W, Li X, Yang C Y, et al. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 1-8.

[13] Su X L, Zhao Y P, Hao S H, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37(24): 5178-5180.

[14] 陈雪, 刘晓威, 张可烨, 等. 腔光力学系统中的量子测量[J]. 物理学报, 2015, 64(16): 164211.

    Chen X, Liu X W, Zhang K Y, et al. Quantum measurement with cavity optomechanical systems[J]. Acta Physica Sinica, 2015, 64(16): 164211.

[15] Fiore V, Yang Y, Kuzyk M C, et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator[J]. Physical Review Letters, 2011, 107(13): 133601.

[16] Wang Y D, Clerk A A. Using interference for high fidelity quantum state transfer in optomechanics[J]. Physical Review Letters, 2012, 108(15): 153603.

[17] 陈超, 吴德伟, 杨春燕, 等. 利用连续变量纠缠信号提高罗兰C台间同步精度的方法[J]. 激光与光电子学进展, 2019, 56(4): 042702.

    Chen C, Wu D W, Yang C Y, et al. Method for improving Roland C inter-station synchronization precision using continuous-variable entanglement signals[J]. Laser & Optoelectronics Progress, 2019, 56(4): 042702.

[18] 谢鸿. 基于腔光力系统的量子相干操控[D]. 福州: 福建师范大学, 2017: 47- 59.

    XieH. The quantum coherence control based on cavity optomechanical system[D]. Fuzhou: Fujian Normal University, 2017: 47- 59.

[19] 朱小霖. 微波腔光力系统中量子光学效应的研究[D]. 太原: 太原理工大学, 2018: 12- 25.

    Zhu XL. Theoretical research on some quantum optical phenomena in an optomechanical system assisted by microwave[D]. Taiyuan: Taiyuan University of Technology, 2018: 12- 25.

[20] 刘艳. 在腔光力系统中实现微波非经典态的研究[D]. 武汉: 华中师范大学, 2016: 62- 87.

    LiuY. Research on the generation of non-classical microwave states in cavity optomechanical systems[D]. Wuhan: Central China Normal University, 2016: 62- 87.

[21] Barzanjeh S, Guha S, Weedbrook C, et al. Microwave quantum illumination[J]. Physical Review Letters, 2015, 114(8): 080503.

[22] Zhang D, Li C B, Zhang Z Y, et al. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media[J]. Physical Review A, 2017, 96(4): 043847.

[23] Li C B, Jiang Z H, Zhang Y Q, et al. Controlled correlation and squeezing in Pr 3+∶Y2SiO5 to yield correlated light beams [J]. Physical Review Applied, 2017, 7(1): 014023.

[24] Huang S M. Quantum state transfer in cavity electro-optic modulators[J]. Physical Review A, 2015, 92(4): 043845.

[25] 张鹏举. 量子照明在雷达目标探测中的应用研究[D]. 成都: 电子科技大学, 2017: 24- 64.

    Zhang PJ. Investigation on the theory of quantum illumination with applications in radar target detection[D]. Chendu: University of Electronic Science and Technology of China, 2017: 24- 64.

[26] O'Connell A D. Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 2010, 464(7289): 697-703.

[27] Mari A, Eisert J. Gently modulating optomechanical systems[J]. Physical Review Letters, 2009, 103(21): 213603.

[28] Zhang K Y, Bariani F, Dong Y, et al. Proposal for an optomechanical microwave sensor at the subphoton level[J]. Physical Review Letters, 2015, 114(11): 113601.

[29] 谷文举. 腔光力系统中振子的冷却及非经典态的制备[D]. 武汉: 华中师范大学, 2014: 32- 42.

    Gu WJ. Ground-state cooling of the mechanical oscillator and preparation of nonclassical states in cavity optomechanical systems[D]. Wuhan: Central China Normal University, 2014: 32- 42.

[30] 王兴昌, 李少康, 李刚, 等. 高热稳定性高精细度光学法布里-珀罗腔系统[J]. 光学学报, 2017, 37(1): 0112004.

    Wang X C, Li S K, Li G, et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse[J]. Acta Optica Sinica, 2017, 37(1): 0112004.

[31] Grudinin I S, Ilchenko V S, Maleki L. Ultrahigh optical Q factors of crystalline resonators in the linear regime[J]. Physical Review A, 2006, 74(6): 063806.

[32] Yan X B, Cui C L, Gu K H, et al. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system[J]. Optics Express, 2014, 22(5): 4886-1895.

[33] 严晓波. 双腔光力学系统的相干控制与潜在应用研究[D]. 长春: 吉林大学, 2014: 84- 96.

    Yan XB. Studies on coherent control and potential applications of double-cavity optomechanical systems[D]. Changchun: Jilin University, 2014: 84- 96.

[34] Feng X M, Jin G R, Yang W. Quantum interferometry with binary-outcome measurements in the presence of phase diffusion[J]. Physical Review A, 2014, 90(1): 013807.

[35] Liu P, Feng X M, Jin G R. Quantum entanglement of an entangled coherent state: role of particle losses[J]. Chinese Physics B, 2014, 23(3): 030310.

[36] 冯晓敏. 基于光量子干涉的相位测量及数值模拟[D]. 北京: 北京交通大学, 2016: 59- 68.

    Feng XM. Phase measurements and numerical simulations based on quantum optical interferometry[D]. Beijing: Beijing Jiaotong University, 2016: 59- 68.

[37] 邵蒙蒙. 双输出量子相位测量[J]. 中国科技信息, 2018( 9): 93- 96.

    Shao MM. Dual output quantum phase measurement[J]. China Science and Technology Information, 2018( 9): 93- 96.

陈超, 吴德伟, 杨春燕, 李响, 罗均文. 基于腔电光力系统增强罗兰C台间同步精度问题研究[J]. 光学学报, 2019, 39(8): 0827001. Chao Chen, Dewei Wu, Chunyan Yang, Xiang Li, Junwen Luo. Research on Enhancing Synchronization Precision Between Roland C Stations Based on Cavity Electro-Opto-Mechanical System[J]. Acta Optica Sinica, 2019, 39(8): 0827001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!