Photonics Research, 2018, 6 (5): 05000A23, Published Online: Jul. 18, 2018   

Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited] Download: 765次

Author Affiliations
1 Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
2 Department of Automation, Tsinghua University, Beijing 100084, China
3 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Copy Citation Text

Weijian Chen, Jing Zhang, Bo Peng, Şahin Kaya Özdemir, Xudong Fan, Lan Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited][J]. Photonics Research, 2018, 6(5): 05000A23.

References

[1] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[2] T. J. Kippenberg, S. M. Spillane, D. K. Armani, K. J. Vahala. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett., 2004, 29: 1224-1226.

[3] L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process. Appl. Phys. Lett., 2005, 86: 091114.

[4] T. J. Kippenberg, K. J. Vahala. Cavity opto-mechanics. Opt. Express, 2007, 15: 17172-17205.

[5] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443: 671-674.

[6] F. Monifi, J. Friedlein, Ş. K. Özdemir, L. Yang. A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator. J. Lightwave Technol., 2012, 30: 3306-3315.

[7] F. Monifi, Ş. K. Özdemir, L. Yang. Tunable add-drop filter using an active whispering gallery mode microcavity. Appl. Phys. Lett., 2013, 103: 181103.

[8] F. Vollmer, S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods, 2008, 5: 591-596.

[9] J. Zhu, Ş. K. Özdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 4: 46-49.

[10] L. He, Ş. K. Özdemir, J. Zhu, L. Yang. Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A, 2010, 82: 053810.

[11] L. He, Ş. K. Özdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6: 428-432.

[12] W. Kim, Ş. K. Özdemir, J. Zhu, F. Monifi, C. Coban, L. Yang. Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator. Opt. Express, 2012, 20: 29426-29446.

[13] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1: 267-291.

[14] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 2014, 111: E3836-E3844.

[15] B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. H. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 2014, 111: 14657-14662.

[16] M. R. Foreman, J. D. Swaim, F. Vollmer. Whispering gallery mode sensors. Adv. Opt. Photon., 2015, 7: 168-240.

[17] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta, 2008, 620: 8-26.

[18] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[19] T. Lu, L. Yang, T. Carmon, B. Min. A narrow-linewidth on-chip toroid Raman laser. IEEE J. Quantum Electron., 2011, 47: 320-326.

[20] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112: 203901.

[21] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 2011, 84: 063828.

[22] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 2016, 93: 033809.

[23] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548: 192-196.

[24] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 2016, 113: 6845-6850.

[25] N. Zhang, S. Liu, K. Wang, Z. Gu, M. Li, N. Yi, S. Xiao, Q. Song. Single nanoparticle detection using far-field emission of photonic molecule around the exceptional point. Sci. Rep., 2015, 5: 11912.

[26] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80: 5243-5246.

[27] C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70: 947-1018.

[28] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103: 093902.

[29] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity-time symmetry in optics. Nat. Phys., 2010, 6: 192-195.

[30] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel. Parity-time synthetic photonic lattices. Nature, 2012, 488: 167-171.

[31] L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, A. Scherer. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater., 2013, 12: 108-113.

[32] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10: 394-398.

[33] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346: 972-975.

[34] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 2014, 346: 975-978.

[35] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525: 354-358.

[36] M. Wimmer, A. Regensburger, M. A. Miri, C. Bersch, D. N. Christodoulides, U. Peschel. Observation of optical solitons in PT-symmetric lattices. Nat. Commun., 2015, 6: 7782.

[37] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548: 187-191.

[38] Z. P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, Y. X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117: 110802.

[39] J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. N. Christodoulides, M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett., 2017, 42: 1556-1559.

[40] H. Benisty, C. Yan, A. Degiron, A. T. Lupu. Healing near-PT-symmetric structures to restore their characteristic singularities: analysis and examples. J. Lightwave Technol., 2012, 30: 2675-2683.

[41] J. Zhu, Ş. K. Özdemir, L. He, L. Yang. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express, 2010, 18: 23535-23543.

[42] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys. Rev. A, 2011, 83: 023803.

[43] J. Zhu, Ş. K. Özdemir, L. He, D. R. Chen, L. Yang. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt. Express, 2011, 19: 16195-16206.

[44] C. Qiu, J. Shu, Z. Li, X. Zhang, Q. Xu. Wavelength tracking with thermally controlled silicon resonators. Opt. Express, 2011, 19: 5143-5148.

Weijian Chen, Jing Zhang, Bo Peng, Şahin Kaya Özdemir, Xudong Fan, Lan Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited][J]. Photonics Research, 2018, 6(5): 05000A23.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!